精英家教网 > 高中数学 > 题目详情
5.设向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,2),则|$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{34}$.

分析 利用平面向量运算法则求出$\overrightarrow{a}+\overrightarrow{b}$,由此能求出|$\overrightarrow{a}$$+\overrightarrow{b}$|.

解答 解:∵向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,2),
∴$\overrightarrow{a}+\overrightarrow{b}$=(5,3),
∴|$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{25+9}$=$\sqrt{34}$.
故答案为:$\sqrt{34}$.

点评 本题考查向理量的模的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.演绎推理是(  )
A.特殊到一般的推理B.特殊到特殊的推理
C.一般到特殊的推理D.一般到一般的推理

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图为60辆汽车通过某一段公路时的时速频率分布直方图,则时速在[60,70)的汽车大约有24辆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用数字1,2,3,4,5组成没有重复数字的5位数,其中2,4不相邻的数有72个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知tanα=2,tan(α-β)=-3,则tanβ=(  )
A.-1B.1C.$\frac{1}{7}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an]的前n项和记为Sn,且满足Sn=2an-n,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:$\frac{n}{2}$$-\frac{1}{3}$$<\frac{{a}_{1}}{{a}_{2}}$$+\frac{{a}_{2}}{{a}_{3}}$+…$+\frac{{a}_{n}}{{a}_{n+1}}$$<\frac{n}{2}$(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正三角形ABC的边长为2,AM是边BC上的高,沿AM将△ABM折起,使得二面角B-AM-C的大小为90°,此时点M到平面ABC的距离为$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.i是虚数单位,则$\frac{2i}{1-i}$的虚部是(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲乙对弈,每局甲赢概率为$\frac{1}{3}$,乙赢概率为$\frac{2}{3}$,三局两胜制,则甲获胜概率为(  )
A.$\frac{7}{27}$B.$\frac{2}{9}$C.$\frac{2}{27}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案