·ÖÎö £¨1£©ÓÉÌâÒâ°Ñ½¹µã×ø±ê´úÈëÔ²µÄ·½³ÌÇó³öc£¬ÔÙÓÉÌõ¼þµÃF1AΪԲEµÄÖ±¾¶Çó³ö|AF1|=3£¬¸ù¾Ý¹´¹É¶¨ÀíÇó³ö|AF2|£¬¸ù¾ÝÍÖÔ²µÄ¶¨ÒåºÍa2=b2+c2ÒÀ´ÎÇó³öaºÍbµÄÖµ£¬´úÈëÍÖÔ²·½³Ì¼´¿É£»
£¨2£©ÓÉ£¨1£©Çó³öAµÄ×ø±ê£¬¸ù¾ÝÏòÁ¿¹²ÏßµÄÌõ¼þÇó³öÖ±ÏßOAµÄбÂÊ£¬ÉèÖ±ÏßlµÄ·½³ÌºÍM¡¢NµÄ×ø±ê£¬ÁªÁ¢Ö±ÏߺÍÍÖÔ²·½³ÌÏûÈ¥y£¬ÀûÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½Çó³ö|MN|£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öµãAµ½Ö±ÏßlµÄ¾àÀ룬´úÈëÈý½ÇÐεÄÃæ»ý¹«Ê½Çó³ö¡÷AMNµÄÃæ»ýSµÄ±í´ïʽ£¬»¯¼òºóÀûÓûù±¾²»µÈʽÇó³öÃæ»ýµÄ×î´óÖµÒÔ¼°¶ÔÓ¦µÄm£¬´úÈëÖ±ÏßlµÄ·½³Ì¼´¿É£®
½â´ð
½â£º£¨1£©ÈçͼԲE¾¹ýÍÖÔ²CµÄ×óÓÒ½¹µãF1£¬F2£¬
¡àc2+£¨0-$\frac{1}{2}$£©2=$\frac{9}{4}$£¬½âµÃc=$\sqrt{2}$£¬¡£¨2·Ö£©
¡ßF1£¬E£¬AÈýµã¹²Ïߣ¬¡àF1AΪԲEµÄÖ±¾¶£¬Ôò|AF1|=3£¬
¡àAF2¡ÍF1F2£¬¡à$|A{F}_{2}{|}^{2}$=$|A{F}_{1}{|}^{2}$-$|{F}_{1}{F}_{2}{|}^{2}$=9-8=1£¬
¡ß2a=|AF1|+|AF2|=3+1=4£¬¡àa=2
ÓÉa2=b2+c2µÃ£¬b=$\sqrt{2}$£¬¡£¨4·Ö£©
¡àÍÖÔ²CµÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»¡£¨5·Ö£©
£¨2£©ÓÉ£¨1£©µÃµãAµÄ×ø±ê£¨$\sqrt{2}$£¬1£©£¬
¡ß$\overrightarrow{MN}=¦Ë\overrightarrow{OA}$£¨¦Ë¡Ù0£©£¬¡àÖ±ÏßlµÄбÂÊΪkOA=$\frac{\sqrt{2}}{2}$£¬¡£¨6·Ö£©
ÔòÉèÖ±ÏßlµÄ·½³ÌΪy=$\frac{\sqrt{2}}{2}$x+m£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{\sqrt{2}}{2}x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$µÃ£¬${x}^{2}+\sqrt{2}mx+{m}^{2}-2=0$£¬
¡àx1+x2=$-\sqrt{2}m$£¬x1x2=m2-2£¬
ÇÒ¡÷=2m2-4m2+8£¾0£¬½âµÃ-2£¼m£¼2£¬¡£¨8·Ö£©
¡à|MN|=$\sqrt{1+{k}^{2}}$|x2-x1|=$\sqrt{1+\frac{1}{2}}$$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-{4x}_{1}{x}_{2}}$
=$\sqrt{\frac{3}{2}}$$\sqrt{£¨-\sqrt{2}m£©^{2}-4£¨{m}^{2}-2£©}$=$\sqrt{{12-3m}^{2}}$£¬
¡ßµãAµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|\frac{\sqrt{2}}{2}¡Á\sqrt{2}-1+m|}{\sqrt{\frac{1}{2}+1}}$=$\frac{\sqrt{6}|m|}{3}$£¬
¡à¡÷AMNµÄÃæ»ýS=$\frac{1}{2}|MN|d$=$\frac{1}{2}¡Á\sqrt{{12-3m}^{2}}¡Á\frac{\sqrt{6}|m|}{3}$
=$\frac{\sqrt{2}}{2}$$\sqrt{{£¨4-m}^{2}£©{m}^{2}}$¡Ü$\frac{\sqrt{2}}{2}¡Á\frac{4-{m}^{2}+{m}^{2}}{2}$=$\sqrt{2}$£¬¡£¨10·Ö£©
µ±ÇÒ½öµ±4-m2=m2£¬¼´m=$¡À\sqrt{2}$£¬Ö±ÏßlµÄ·½³ÌΪ$y=\frac{\sqrt{2}}{2}x¡À\sqrt{2}$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Î¤´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÏòÁ¿¹²ÏßÌõ¼þ£¬ÒÔ¼°Ö±Ïß¡¢Ô²ÓëÍÖÔ²µÄλÖùØÏµµÈ£¬¿¼²éµÄ֪ʶ¶à£¬×ÛºÏÐÔÇ¿£¬¿¼²é»¯¼ò¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6 | B£® | 7 | C£® | 8 | D£® | 9 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÓÐ99%µÄÈËÈÏΪ¸ÃÀ¸Ä¿ÓÅÐã | |
| B£® | ÓÐ99%µÄÈËÈÏΪ¸ÃÀ¸Ä¿ÊÇ·ñÓÅÐãÓë¸Ä¸ïÓйØÏµ | |
| C£® | ÓÐ99%µÄ°ÑÎÕÈÏΪµçÊÓÀ¸Ä¿ÊÇ·ñÓÅÐãÓë¸Ä¸ïÓйØÏµ | |
| D£® | ûÓÐÀíÓÉÈÏΪµçÊÓÀ¸Ä¿ÊÇ·ñÓÅÐãÓë¸Ä¸ïÓйØÏµ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {x|x£¼$\frac{1}{2}$} | B£® | {x|x£¼$\frac{1}{2}$ÇÒx¡Ù-$\frac{1}{2}$} | C£® | {x|x£¾$\frac{1}{2}$} | D£® | {x|x¡Ü$\frac{1}{2}$ÇÒx¡Ù-$\frac{1}{2}$} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ?x¡Ê£¨0£¬+¡Þ£©£¬2x£¼x2 | B£® | ?x¡Ê£¨0£¬+¡Þ£©£¬2x£¾x2 | C£® | ?x¡Ê£¨0£¬+¡Þ£©£¬2x¡Ýx2 | D£® | ?x¡Ê£¨0£¬+¡Þ£©£¬2x¡Ýx2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com