分析 (1)由(2a+c)cosB+bcosC=0.利用正弦定理可得:2sinAcosB+sinCcosB+sinBcosC=0,化简即可解出.(2)由a=3,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,可得$\frac{3\sqrt{3}}{2}$=$\frac{1}{2}acsinB$=$\frac{1}{2}×3c•sin\frac{2π}{3}$,解得c.可得$\overrightarrow{AB}•\overrightarrow{BC}$=-cacosB.
解答 解:(1)由(2a+c)cosB+bcosC=0.
利用正弦定理可得:2sinAcosB+sinCcosB+sinBcosC=0,
化为2sinAcosB=-sin(C+B)=-sinA,
∵sinA≠0,
∴cosB=-$\frac{1}{2}$,B∈(0,π).
解得B=$\frac{2π}{3}$.
(2)∵a=3,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,
∴$\frac{3\sqrt{3}}{2}$=$\frac{1}{2}acsinB$=$\frac{1}{2}×3c•sin\frac{2π}{3}$,解得c=2.
∴$\overrightarrow{AB}•\overrightarrow{BC}$=-cacosB=-2×3×$cos\frac{2π}{3}$=3.
点评 本题考查了正弦定理的应用、两角和差公式、三角形面积计算公式、向量数量积运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=x+x-1 | B. | y=x3+x | C. | y=2x+log2x | D. | $y={x^{\frac{1}{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈(-∞,0),x2-ax+4>0 | B. | ?x∈(-∞,0),x2-ax+4>0 | ||
| C. | ?x∈(0,+∞),x2-ax+4≤0 | D. | ?x∈(0,+∞),x2-ax+4≤0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com