精英家教网 > 高中数学 > 题目详情
10.若a,b,c>0且a(a+b+c)+bc=5,则2a+b+c的最小值为2$\sqrt{5}$.

分析 变形已知式子可得(a+c)(a+b)=5,可得2a+b+c=(a+b)+(a+c),由基本不等式求最值可得.

解答 解:∵a,b,c>0,∴a+c>0,a+b>0,
∵a(a+b+c)+bc=a(a+b)+ac+bc
=a(a+b)+c(a+b)=(a+c)(a+b)=5,
∴2a+b+c=(a+b)+(a+c)
≥2$\sqrt{(a+b)(a+c)}$=2$\sqrt{5}$,
∴2a+b+c的最小值为2$\sqrt{5}$

点评 本题考查基本不等式求最值,组合变形为可用基本不等式的形式是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.过⊙O外一点P作⊙O的切线PA,切点为A,连OP与⊙O交于点C,过C作AP的垂线,垂足为D,若PA=8cm,PC=4cm,则PD的长为3.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\frac{3{x}^{2}}{\sqrt{1-2x}}$+(2x+1)2的定义域为(  )
A.{x|x<$\frac{1}{2}$}B.{x|x<$\frac{1}{2}$且x≠-$\frac{1}{2}$}C.{x|x>$\frac{1}{2}$}D.{x|x≤$\frac{1}{2}$且x≠-$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设奇函数f(x)与g(x)偶函数的定义域都为(-∞,+∞),且满足f(x)+g(x)=2x,有下列命题:
①g(x)≥1在(-∞,+∞)恒成立;
②f(x)2-g(x)2=-1在(-∞,+∞)恒成立;
③f(x)≤g(x)在(-∞,+∞)恒成立;
④g(2x)=2f(x)g(x)在(-∞,+∞)恒成立.
则真命题是①②③(填所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别是a,b,c,若(2a+c)cosB+bcosC=0.
(1)求角B的大小;
(2)若a=3,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求$\overrightarrow{AB}•\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{x}{{e}^{x}}$(x∈R),若x1≠x2,且f(x1)=f(x2),则x1,2-x2大小关系是(  )
A.x1>2-x2B.x1<2-x2
C.x1=2-x2D.x1与2-x2大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“?x0∈(0,+∞),2x0<x02”的否定为(  )
A.?x∈(0,+∞),2x<x2B.?x∈(0,+∞),2x>x2C.?x∈(0,+∞),2x≥x2D.?x∈(0,+∞),2x≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点M(3,1),直线ax-y+4=0及圆C:(x-1)2+(y-2)2=4
(1)若直线ax-y+4=0与圆C相切,求a的值;
(2)若直线ax-y+4=0与圆C相交于A,B两点,且弦AB的长为2$\sqrt{3}$,求a的值;
(3)求过点M的圆C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=x3-x2-x的单调递减区间为($-\frac{1}{3}$,1).

查看答案和解析>>

同步练习册答案