精英家教网 > 高中数学 > 题目详情
已知对称中心为原点的双曲线与椭圆有公共的焦点,且它们的离心率互为倒数,则该椭圆的标准方程为___________________。

试题分析:根据双曲线方程求得其焦点坐标和离心率,进而可得椭圆的焦点坐标和离心率,求得椭圆的长半轴和短半轴的长,进而可得椭圆的方程。解:双曲线中,a==b,∴F(±1,0),e==∴椭圆的焦点为(±1,0),离心率为∴则长半轴长为,短半轴长为1.故方程为,故答案为
点评:本题主要考查了双曲线的性质和椭圆的标准方程.要记住双曲线和椭圆的定义和性质.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分13分)
(1)某三棱锥的侧视图和俯视图如图所示,求三棱锥的体积. 
 
(2)过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点. 用表示A,B之间的距离;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(Ⅰ)判断曲线的切线能否与曲线相切?并说明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆和双曲线的公共焦点为是两曲线的一个交点,则=     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点,最小值为8.
(1)求该抛物线的方程;
(2)若直线与抛物线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以双曲线的离心率为半径,右焦点为圆心的圆与双曲线的渐近线相切,则的值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点坐标是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从抛物线上任意一点向圆作切线,则切线长的最小值为
A.B.C.D.

查看答案和解析>>

同步练习册答案