精英家教网 > 高中数学 > 题目详情
12.求证:若奇函数f(x)存在反函数,则反函数必为奇函数.

分析 根据奇函数的性质得出f-1(-x)和f-1(x)的关系,利用函数奇偶性的定义得出结论.

解答 解:设奇函数f(x)的反函数为f-1(x),∵f(x)是奇函数,∴f(x)的值域关于原点对称,即f-1(x)的定义域关于原点对称.
假设f(x)=y,则f(-x)=-y.∴f-1(y)=x,f-1(-y)=-x.
∴f-1(-y)=-f-1(y),即f-1(-x)=-f-1(x)
∴f-1(x)是奇函数.

点评 本题考查了反函数的定义,函数奇偶性的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知A=[-2,a],B={y丨y=2x+3,x∈A},C={y丨y=x2,x∈A},C⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=4x的焦点为F,O为坐标原点,M为抛物线上一点且|MF|=3,则△OMF的面积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,ABCD为正方形,且PD=AB=1,G为△ABC的重心,则PG与底面所成的角θ满足(  )
A.θ=$\frac{π}{4}$B.cosθ=$\frac{2\sqrt{34}}{17}$C.tanθ=$\frac{2\sqrt{2}}{3}$D.sinθ=$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,已AB∥CD,AB=2DC,M为PB的中点.
(1)求证:CM∥平面PAD;
(2)若AD⊥AB,BC⊥PA,平面PAB⊥平面ABCD,求证:PA⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=2sin(3x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$]的最值,并说明取得最值时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,A、B、C的对边分别为a、b、c,己知c-b=2bcosA.
(1)若a=2$\sqrt{6}$,b=3,求c;
(2)若C=$\frac{π}{2}$,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.先化简,再求值:(2•a${\;}^{\frac{3}{4}}$•b${\;}^{-\frac{2}{3}}$)•(a${\;}^{-\frac{1}{2}}$•b${\;}^{-\frac{5}{3}}$)•(a${\;}^{\frac{3}{4}}$•b${\;}^{\frac{4}{3}}$),其中a=6,b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是R上的奇函数,当x>0时,f(x)=$\frac{1}{2}$(|x+$\frac{1}{2}$tanα|+|x+tanα|+$\frac{3}{2}$tanα)(α为常数,且-$\frac{π}{2}$<α<$\frac{π}{2}$),若?x∈R,都有f(x-3)≤f(x)恒成立,则实数α的取值范围是-$\frac{π}{4}$≤α<$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案