精英家教网 > 高中数学 > 题目详情

已知=2,点()在函数的图像上,其中=.
( 1 ) 证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

(1)根据递推关系分析可知,两边取对数来得到证明。
(2)
(3),并根据上面的结论来得到证明

解析试题分析:(1)证明:由已知
 两边取对数得,即
是公比为2的等比数列。
(2)解:由(1)知

=
(3

 
考点:数列的求和
点评:主要是考查了数列的求和的运用,以及等比数列的定义的运用,属于难度试题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数同时满足:①不等式 的解集有且只有一个元素;②在定义域内存在,使得不等式成立 设数列的前项和为
(1)求数列的通项公式;
(2)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令为正整数),求数列的变号数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足,且.
(1)求
(2)是否存在实数t,使得,且{}为等差数列?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是“数列”.
(Ⅰ)若,数列是否为“数列”?若是,指出它对应的实常数,若不是,请说明理由;
(Ⅱ)证明:若数列是“数列”,则数列也是“数列”;
(Ⅲ)若数列满足为常数.求数列项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列的前项和为,且对任意正整数,点都在直线上.
(1)求数列的通项公式;
(2)若求数列项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足
(1)设是公差为的等差数列.当时,求的值;
(2)设求正整数使得一切均有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列在抛物线上;数列中,点在过点(0,1),以为斜率的直线上。
(1)求数列的通项公式;
(2)若成立,若存在,求出k值;若不存在,请说明理由;
(3)对任意正整数,不等式恒成立,求正数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{}中,,且
(1)求的值;
(2)猜测数列{}的通项公式,并用数学归纳法证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数
(1)求实数的取值集合
(2)当取值集合中的最小值时, 定义数列;满足, , 设, 证明:数列是等比数列, 并求数列的通项公式.
(3)若, 数列的前项和为, 求.

查看答案和解析>>

同步练习册答案