精英家教网 > 高中数学 > 题目详情

已知各项均为正数的数列的前项和为,且对任意正整数,点都在直线上.
(1)求数列的通项公式;
(2)若求数列项和

(1)
(2)

解析试题分析: 解:由题意知;当
时,两式相减得
整理得: 数列为首项,2为公比的等比数列.
   5分
(2)   
①        7分
②            9分
②得      11分
=…14分
考点:等比数列和错位相减法的运用
点评:主要是考查了数列的错位相减法的运用,以及等比数列的通项公式,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知正项数列的前项和为的等比中项.
(1)求证:数列是等差数列;
(2)若,且,求数列的通项公式;
(3)在(2)的条件下,若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足
(1)计算,由此猜想通项公式,并用数学归纳法证明此猜想;
(2)若数列满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定常数,定义函数,数列满足.
(1)若,求
(2)求证:对任意,;
(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列的公差为,且成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知=2,点()在函数的图像上,其中=.
( 1 ) 证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知实数,求证:
(2)在数列{an}中,,写出并猜想这个数列的通项公式达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的各项都是正数,前项和为,且对任意,都有.
(1)求证:;    (2)求数列的通项公式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足S n + a n= 2n +1.
(1)写出a1a2a3, 并推测a n的表达式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

同步练习册答案