已知函数同时满足:①不等式 的解集有且只有一个元素;②在定义域内存在,使得不等式成立 设数列的前项和为
(1)求数列的通项公式;
(2)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令(为正整数),求数列的变号数
科目:高中数学 来源: 题型:解答题
数列{an}(n∈N﹡)中,a1=0,当3an<n2时,an+1=n2,当3an>n2时,an+1=3an.求a2,a3,a4,a5,猜测数列的通项an并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,.
(1)分别求数列,的通项公式,;
(2)设数列的前项和为,求的表达式,并求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知正项数列的前项和为,是与的等比中项.
(1)求证:数列是等差数列;
(2)若,且,求数列的通项公式;
(3)在(2)的条件下,若,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列的各项均为正数,为其前项和,对于任意的,满足关系式
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为,求证:对于任意的正整数,总有.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列中,,前和
(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知=2,点()在函数的图像上,其中=.
( 1 ) 证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com