精英家教网 > 高中数学 > 题目详情
11.棱长为a的正方体ABCD-A1B1C1D1中,若与D1B平行的平面截正方体所得的截面面积为S,则S的取值范围是(0,$\frac{\sqrt{6}}{2}{a}^{2}$).

分析 根据题意,取AA1与CC1的中点M和N,得出四边形MBND1的面积S,从而得出与D1B平行的平面截正方体所得截面面积S的取值范围.

解答 解:根据题意,取AA1的中点M,CC1的中点N,
连接D1M、MB、BN、ND1,如图所示;
则MN⊥BD1
又AB=a,∴MN=$\sqrt{2}a$,BD1=$\sqrt{3}a$,
∴四边形MBND1的面积为S=$\frac{1}{2}$•MN•BD1=$\frac{1}{2}$×$\sqrt{2}$a×$\sqrt{3}$a=$\frac{\sqrt{6}}{2}{a}^{2}$.
∴与D1B平行的平面截正方体所得截面面积S的取值范围是(0,$\frac{\sqrt{6}}{2}{a}^{2}$).
故答案为:(0,$\frac{\sqrt{6}}{2}{a}^{2}$).

点评 本题考查棱柱的结构特征,考查了空间中的位置关系的应用问题,体现了转化思想的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,在平面直角坐标系xOy中,已知过点A(0,2)的直线与抛物线C:x2=2py(p>0)相交于两点M,N,与直线y=-2相交于点P(M位于A,P之间),直线OM平分∠POA.
(1)求抛物线C的方程;
(2)若抛物线C在Q点处的切线为l0,当点A到直线l0的距离最小时,求直线l0的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若A,B是以点M(0,10)为圆心,|OA|的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,某城市有一个五边形的地下污水管通道ABCDE,四边形BCDE是矩形,其中CD=8km,BC=3km;△ABE是以BE为底边的等腰三角形,AB=5km.现欲在BE的中间点P处建地下污水处理中心,为此要过点P建一个“直线型”的地下水通道MN接通主管道,其中接口处M点在矩形BCDE的边BC或CD上.
(1)若点M在边BC上,设∠BPM=θ,用θ表示BM和NE的长;
(2)点M设置在哪些地方,能使点M,N平分主通道ABCDE的周长?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A,B是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右顶点,F为其右焦点,在直线x=4上任取一点P(点P不在x轴上),连结PA,PF,PB.若半焦距c=1,且2kPF=kPA+kPB
(1)求椭圆C的方程;
(2)若直线PF交椭圆于M,N,记△AMB、△ANB的面积分别为S1、S2,求$\frac{S_1}{S_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设m=$\sqrt{6}$-$\sqrt{5}$,n=$\sqrt{7}$-$\sqrt{6}$,p=$\sqrt{8}$-$\sqrt{7}$,则m,n,p的大小顺序为(  )
A.m>p>nB.p>n>mC.n>m>pD.m>n>p

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点F1,F2,且椭圆过点(0,$\sqrt{3}}$),(${\sqrt{3}$,-$\frac{{\sqrt{6}}}{2}}$),且A是椭圆上位于第一象限的点,且△AF1F2的面积S${\;}_{△A{F_1}{F_2}}}$=$\sqrt{3}$.
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P,Q,直线AP,AQ与x轴相交于M,N两点,点C(${\frac{5}{2}$,0),则$\overrightarrow{CM}$•$\overrightarrow{CN}$是否为定值,如果是定值,求出这个定值,如果不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函象y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,记g(x)=f(x)[f(x)+2f(2)-1],若y=g(x)在区间[$\frac{1}{2}$,2]上是增函数,则实数a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若Ax+By+5<0表示的区域不包括点(2,4),λ=A+2B,则λ的取值范围是[$-\frac{5}{2}$,+∞).

查看答案和解析>>

同步练习册答案