分析 由图象求出函数解析式,然后利用定积分求得图中阴影部分的面积.
解答 解:由图可知,A=1,$\frac{T}{2}=\frac{2π}{3}-(-\frac{π}{3})=π$,T=2π,
∴ω=1,
则$f(x)=sin(x-\frac{π}{6})$,
∴图中的阴影部分的面积为${-∫}_{0}^{\frac{π}{6}}sin(x-\frac{π}{6})dx$=cos($\frac{π}{6}-\frac{π}{6}$)-cos(-$\frac{π}{6}$)=1-$\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}$.
故答案为:$\frac{2-\sqrt{3}}{2}$.
点评 本题考查了利用y=Asin(ωx+φ)的部分图象求函数的解析式,考查了定积分的求法,是基础的计算题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-6,+∞) | B. | (-3,+∞) | C. | [-6,1] | D. | (-3,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{\frac{1}{4},4\}$ | B. | {1,4} | C. | $\{1,\frac{1}{4}\}$ | D. | $\{1,\frac{1}{4},4\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com