精英家教网 > 高中数学 > 题目详情
13.已知数列 {an}满足 a1=1,an-an+1=$\frac{{2{a_n}{a_{n+1}}}}{{n({n+1})}}(n∈{N^*})$,则 an=$\frac{n}{3n-2}$.

分析 把已知的数列递推式变形,得到即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=2(\frac{1}{n}-\frac{1}{n+1})$,然后利用累加法求得数列通项公式.

解答 解:由an-an+1=$\frac{{2{a_n}{a_{n+1}}}}{{n({n+1})}}(n∈{N^*})$,得
$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,
即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=2(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{1}{{a}_{n}}=(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}})+(\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n-2}})+…+(\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}})+\frac{1}{{a}_{1}}$(n≥2)
=$2(\frac{1}{n-1}-\frac{1}{n}+\frac{1}{n-2}-\frac{1}{n-1}+…\frac{1}{1}-\frac{1}{2})+1$
=$2(1-\frac{1}{n})+1$=$\frac{3n-2}{n}$(n≥2).
∴${a}_{n}=\frac{n}{3n-2}$(n≥2).
当n=1时,上式成立.
∴${a}_{n}=\frac{n}{3n-2}$.
故答案为:${a}_{n}=\frac{n}{3n-2}$.

点评 本题考查了数列递推式,考查了裂项相消法求数列的和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=Asin($ωx-\frac{π}{6})(A>0,ω>0)$的图象如图所示,则图中的阴影部分的面积为$\frac{{2-\sqrt{3}}}{2}$;

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算Cn1+2Cn2+3Cn3+…+nCnn,可以采用以下方法:构造等式:Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n,两边对x求导,得Cn1+2Cn2x+3Cn3x2+…+nCnnxn-1=n(1+x)n-1,在上式中令x=1,得Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1.类比上述计算方法,计算Cn1+22Cn2+32Cn3+…+n2Cnn=n(n+1)•2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实数a使得复数$\frac{a+i}{1-i}$是纯虚数,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点A(-a,0),B(a,0),若圆 (x-3)2+(y-4)2=1上存在点P.使得∠APB=90°,则正数a的取值范围为(  )
A.[4,6]B.[5,6]C.[4,5]D.[3,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1-x}{1+a{x}^{2}}$,其中a∈R.
(1)当a=-$\frac{1}{4}$时,求 f (x)的单调区间;
(2)当a>0时,证明:存在实数m>0,使得对于任意的实数x,都有|f(x)|≤m成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{7}$,b=3,c=2,则A=$\frac{π}{3}$;△ABC的面积为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,其中M($\frac{π}{12}$,2),N($\frac{π}{3}$,0).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且a=$\sqrt{13}$,c=3,f($\frac{A}{2}$)=$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,Sn为其前n项和,若a1=$\frac{3}{2}$,a2=2,并且Sn+1-3Sn+2Sn-1+1=0(n≥2).试判断{an-1}(n∈N*)是不是等比数列.

查看答案和解析>>

同步练习册答案