精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,其中M($\frac{π}{12}$,2),N($\frac{π}{3}$,0).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且a=$\sqrt{13}$,c=3,f($\frac{A}{2}$)=$\sqrt{3}$,求△ABC的面积.

分析 (Ⅰ)由图象可求f(x)的周期T,由周期公式可得ω,又f(x)过点($\frac{π}{12}$,2),结合|φ|<$\frac{π}{2}$,即可求得φ的值,从而可求函数f(x)的解析式;
(Ⅱ)由f($\frac{A}{2}$)=2sin(A+$\frac{π}{3}$)=$\sqrt{3}$,结合A∈(0,π),即可求得A的值,在△ABC中,由余弦定理得b2-3b-4=0,解得b的值,由三角形面积公式即可得解.

解答 本题满分(12分).
解:(Ⅰ)由图象可知:函数f(x)的周期T=4×($\frac{π}{3}$-$\frac{π}{12}$)=π,(1分)
∴ω=$\frac{2π}{π}$=2.(2分)
又f(x)过点($\frac{π}{12}$,2),
∴f($\frac{π}{12}$)=2sin($\frac{π}{6}$+φ)=2,sin($\frac{π}{6}$+φ)=1,(3分)
∵|φ|<$\frac{π}{2}$,$\frac{π}{6}$+φ∈(-$\frac{π}{3}$,$\frac{2π}{3}$),
∴$\frac{π}{6}$+φ=$\frac{π}{2}$,即φ=$\frac{π}{3}$.(4分)
∴f(x)=2sin(2x+$\frac{π}{3}$).(5分)
(Ⅱ)∵f($\frac{A}{2}$)=2sin(A+$\frac{π}{3}$)=$\sqrt{3}$,即sin(A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
又A∈(0,π),A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
∴A+$\frac{π}{3}$=$\frac{2π}{3}$,即A=$\frac{π}{3}$.(7分)
在△ABC中,A=$\frac{π}{3}$,a=$\sqrt{13}$,c=3,
由余弦定理得 a2=b2+c2-2bccosA,(8分)
∴13=b2+9-3b,即b2-3b-4=0,
解得b=4或b=-1(舍去).(10分)
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×4×3×sin\frac{π}{3}$=3$\sqrt{3}$.(12分)

点评 本题主要考查解三角形,三角函数的图象与性质等基础知识;考查运算求解能力,考查化归与转化思想、数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB,E为PA的中点.
(1)求证:BE∥平面PCD;
(2)求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列 {an}满足 a1=1,an-an+1=$\frac{{2{a_n}{a_{n+1}}}}{{n({n+1})}}(n∈{N^*})$,则 an=$\frac{n}{3n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人.现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生、本科生与研究生这三类学生中分别抽取(  )
A.55人,80人,45人B.40人,100人,40人C.60人,60人,60人D.50人,100人,30人

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.复数z=i(1+2i)(i为虚数单位),则$\overline{z}$=-2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.口袋中有6个小球,其中4个红球,2个白球,从袋中任取2个小球.
(I)求所取2个小球都是红球的概率;
(Ⅱ)求所取2个小球颜色不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b,c分别为△ABC三个内角的对边,且a+b=$\sqrt{3}csinA+ccosA$.
(I)求角C;
(Ⅱ)如图,设D为BC的中点,且AD=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-$\frac{1}{x}$+1+2alnx(a∈R).
(1)若函数f(x)在点(1,f(1)处的切线方程为y=b,求a+b的值;
(2)若函数f(x)有两个极值点x1,x2,并且x1<x2
①求实数a的取值范围;
②若A(x1,f(x1)),B(x2,f(x2))两点连线的斜率为k,求证:$\frac{1}{2}$k-1>a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1上的点.试确定D的位置,使得DC1⊥平面DBC,并求此时二面角A-BD-C的大小.

查看答案和解析>>

同步练习册答案