精英家教网 > 高中数学 > 题目详情
10.某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人.现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生、本科生与研究生这三类学生中分别抽取(  )
A.55人,80人,45人B.40人,100人,40人C.60人,60人,60人D.50人,100人,30人

分析 先根据总体数和抽取的样本,求出每个个体被抽到的概率,用每一个层次的数量乘以每个个体被抽到的概率就等于每一个层次的值.

解答 解:每个个体被抽到的概率为$\frac{180}{5400}$=$\frac{1}{30}$,
∴专科生被抽的人数是$\frac{1}{30}$×1500=50,
本科生要抽取$\frac{1}{30}$×3000=100,
研究生要抽取$\frac{1}{30}$×900=30,
故选:D.

点评 本题考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=1-$\frac{a}{x}$-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线方程;
(Ⅱ)当a≥0时,记函数Γ(x)=$\frac{1}{2}$ax2+(1-2a)x+$\frac{a}{x}$-1+f(x),试求Γ(x)的单调递减区间;
(Ⅲ)设函数h(a)=3λa-2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实数a使得复数$\frac{a+i}{1-i}$是纯虚数,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1-x}{1+a{x}^{2}}$,其中a∈R.
(1)当a=-$\frac{1}{4}$时,求 f (x)的单调区间;
(2)当a>0时,证明:存在实数m>0,使得对于任意的实数x,都有|f(x)|≤m成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{7}$,b=3,c=2,则A=$\frac{π}{3}$;△ABC的面积为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤2}\\{x-y≤2}\end{array}\right.$,若不等式ax-y≤3恒成立,则实数a的取值范围为(  )
A.(-∞,4]B.(-∞,$\frac{3}{2}$]C.[$\frac{3}{2}$,2]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,其中M($\frac{π}{12}$,2),N($\frac{π}{3}$,0).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且a=$\sqrt{13}$,c=3,f($\frac{A}{2}$)=$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点${F_1}({-2\sqrt{5},0})$,右焦点${F_2}({2\sqrt{5},0})$,离心率e=$\frac{{\sqrt{5}}}{2}$.若点P为双曲线C右支上一点,则|PF1|-|PF2|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设a,b,c>0,a+b+c=1,求证:$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$≤3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案