精英家教网 > 高中数学 > 题目详情
1.实数a使得复数$\frac{a+i}{1-i}$是纯虚数,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.b<c<aD.c<b<a

分析 利用复数代数形式的乘除运算化简复数$\frac{a+i}{1-i}$,由其是纯虚数求得a值,再通过求定积分得到b、c的大小,则答案可求.

解答 解:由$\frac{a+i}{1-i}$=$\frac{(a+i)(1+i)}{(1-i)(1+i)}=\frac{(a-1)+(a+1)i}{2}$是纯虚数,得a=1;
b=${∫}_{0}^{1}$xdx=$\frac{1}{2}{x}^{2}{|}_{0}^{1}=\frac{1}{2}$,
由定积分的几何意义可知,c=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示单位圆在第一象限部分与x轴、y轴所围成的封闭曲线的面积,等于$\frac{π}{4}$,
∴b<c<a.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了定积分的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB,E为PA的中点.
(1)求证:BE∥平面PCD;
(2)求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足z•(2-i)=1(i为虚数单位),则|z|=(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{1}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=${cos^2}({x-\frac{π}{6}})$的单调增区间是(  )
A.$({-\frac{π}{3}+kπ,\frac{π}{6}+kπ})({k∈Z})$B.$({\frac{π}{6}+kπ,\frac{2π}{3}+kπ})({k∈Z})$
C.$({-\frac{π}{3}+2kπ,\frac{π}{6}+2kπ})({k∈Z})$D.$({\frac{π}{6}+2kπ,\frac{2π}{3}+2kπ})({k∈Z})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若P=$\frac{11}{12}$.则输出的n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列 {an}满足 a1=1,an-an+1=$\frac{{2{a_n}{a_{n+1}}}}{{n({n+1})}}(n∈{N^*})$,则 an=$\frac{n}{3n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人.现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生、本科生与研究生这三类学生中分别抽取(  )
A.55人,80人,45人B.40人,100人,40人C.60人,60人,60人D.50人,100人,30人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-$\frac{1}{x}$+1+2alnx(a∈R).
(1)若函数f(x)在点(1,f(1)处的切线方程为y=b,求a+b的值;
(2)若函数f(x)有两个极值点x1,x2,并且x1<x2
①求实数a的取值范围;
②若A(x1,f(x1)),B(x2,f(x2))两点连线的斜率为k,求证:$\frac{1}{2}$k-1>a.

查看答案和解析>>

同步练习册答案