精英家教网 > 高中数学 > 题目详情
9.若复数z满足z•(2-i)=1(i为虚数单位),则|z|=(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{1}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:∵复数z满足z•(2-i)=1,
∴z=$\frac{1}{2-i}$=$\frac{2+i}{(2-i)(2+i)}$=$\frac{2}{5}+\frac{1}{5}i$
则|z|=$\sqrt{(\frac{2}{5})^{2}+(\frac{1}{5})^{2}}$=$\frac{\sqrt{5}}{5}$.
故选:D.

点评 本题考查了复数的运算法则、模的计算公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为10,5,4,则该三棱锥外接球的表面积为(  )
A.141πB.45πC.3$\sqrt{5}$πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=1-$\frac{a}{x}$-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线方程;
(Ⅱ)当a≥0时,记函数Γ(x)=$\frac{1}{2}$ax2+(1-2a)x+$\frac{a}{x}$-1+f(x),试求Γ(x)的单调递减区间;
(Ⅲ)设函数h(a)=3λa-2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,设圆C:ρ=4cosθ与直线l:θ=$\frac{π}{4}$(ρ∈R)交于A,B两点,求以AB为直径的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算Cn1+2Cn2+3Cn3+…+nCnn,可以采用以下方法:构造等式:Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n,两边对x求导,得Cn1+2Cn2x+3Cn3x2+…+nCnnxn-1=n(1+x)n-1,在上式中令x=1,得Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1.类比上述计算方法,计算Cn1+22Cn2+32Cn3+…+n2Cnn=n(n+1)•2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是某算法的程序框图,当输出的结果T>70时,正整数n的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实数a使得复数$\frac{a+i}{1-i}$是纯虚数,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1-x}{1+a{x}^{2}}$,其中a∈R.
(1)当a=-$\frac{1}{4}$时,求 f (x)的单调区间;
(2)当a>0时,证明:存在实数m>0,使得对于任意的实数x,都有|f(x)|≤m成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点${F_1}({-2\sqrt{5},0})$,右焦点${F_2}({2\sqrt{5},0})$,离心率e=$\frac{{\sqrt{5}}}{2}$.若点P为双曲线C右支上一点,则|PF1|-|PF2|=8.

查看答案和解析>>

同步练习册答案