精英家教网 > 高中数学 > 题目详情
17.在极坐标系中,设圆C:ρ=4cosθ与直线l:θ=$\frac{π}{4}$(ρ∈R)交于A,B两点,求以AB为直径的圆的极坐标方程.

分析 首先,将给定的圆化为直角坐标方程,然后,求解点A、B的坐标,然后,确定其方程.

解答 解:以极点为坐标原点,极轴为x轴的正半轴,建立直角坐标系,
则由题意,得圆C的直角坐标方程x2+y2-4x=0,
直线l的直角坐标方程y=x.…(4分)
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-4x=0}\\{y=x}\end{array}\right.$,解得
$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,
所以A(0,0),B(2,2),
从而以AB为直径的圆的直角坐标方程为(x-1)2+(y-1)2=2,
即x2+y2=2x+2y.…(7分)
将其化为极坐标方程为:ρ2-2ρ(cosθ+sinθ)=0,
即ρ=2(cosθ+sinθ).…(10分)

点评 本题重点考查了圆的极坐标方程和普通方程、极坐标和直角坐标方程的互化等知识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若直线2x+y-2$\sqrt{5}$=0过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}-{y}^{2}=1$B.x2-$\frac{{y}^{2}}{4}=1$C.$\frac{{x}^{2}}{10}-\frac{{y}^{2}}{5}=1$D.$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=1-$\frac{a}{x}+ln\frac{1}{x}$(a为实数).
(Ⅰ)当a=1时,求函数f(x)的图象在点$(\frac{1}{2},f(\frac{1}{2}))$处的切线方程;
(Ⅱ)设函数h(a)=3λa-2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,且存在a满足h(a)≥λ+$\frac{1}{8}$,求λ的取值范围;
(Ⅲ)已知n∈N*,求证:ln(n+1)<1+$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB,E为PA的中点.
(1)求证:BE∥平面PCD;
(2)求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集U=R,函数f(x)=lg(|x+1|-1)的定义域为A,集合B={x|cosπx=1},则(∁UA)∩B的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足z•(2-i)=1(i为虚数单位),则|z|=(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{1}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若P=$\frac{11}{12}$.则输出的n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.口袋中有6个小球,其中4个红球,2个白球,从袋中任取2个小球.
(I)求所取2个小球都是红球的概率;
(Ⅱ)求所取2个小球颜色不相同的概率.

查看答案和解析>>

同步练习册答案