| A. | 141π | B. | 45π | C. | 3$\sqrt{5}$π | D. | 24π |
分析 三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,转化为对角线长,即可求解外接球的表面积.
解答 解:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,
设长方体的三度为a,b,c由题意得:ab=20,ac=10,bc=8,
解得:a=5,b=4,c=2,
所以球的直径为:$\sqrt{25+16+4}$=3$\sqrt{5}$,
它的半径为$\frac{3\sqrt{5}}{2}$,
球的表面积为$4π•(\frac{3\sqrt{5}}{2})^{2}$=45π,
故选:B.
点评 本题是基础题,考查几何体的外接球的体积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -3 | C. | 0 | D. | -7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}-{y}^{2}=1$ | B. | x2-$\frac{{y}^{2}}{4}=1$ | C. | $\frac{{x}^{2}}{10}-\frac{{y}^{2}}{5}=1$ | D. | $\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-6,+∞) | B. | (-3,+∞) | C. | [-6,1] | D. | (-3,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 锻练时间 | 男生 | 女生 | 合计 |
| 少于1小时 | 5 | 15 | 20 |
| 不少于1小时 | 20 | 10 | 30 |
| 合 计 | 25 | 25 | 50 |
| P(K2≥K0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{1}{5}$ | C. | $\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com