精英家教网 > 高中数学 > 题目详情
10.在△ABC中,内角A、B、C的对边分别是a、b、c,若a2+b2=4a+2b-5,且a2=b2+c2-bc,则S△ABC=$\frac{{\sqrt{39}+\sqrt{3}}}{8}$.

分析 由a2=b2+c2-bc,利用余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,可得A.由a2+b2=4a+2b-5,可得(a-2)2+(b-1)2=0,解得a,b.利用余弦定理可得:a2=b2+c2-2bccosA,解得c,利用三角形面积计算公式即可得出.

解答 解:由a2=b2+c2-bc,
利用余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵θ∈(0,π),∴$A=\frac{π}{3}$.
∵a2+b2=4a+2b-5,
∴(a-2)2+(b-1)2=0,
解得a=2,b=1.
由余弦定理可得:a2=b2+c2-2bccosA,
∴4=1+c2-c,
∴c2-c-3=0,
解得c=$\frac{1+\sqrt{13}}{2}$,
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{1}{2}×1×\frac{1+\sqrt{13}}{2}×\frac{\sqrt{3}}{2}$=$\frac{{\sqrt{39}+\sqrt{3}}}{8}$,
故答案为:$\frac{{\sqrt{39}+\sqrt{3}}}{8}$.

点评 本题考查了正弦定理余弦定理的应用、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an+1+an}的前n项和Sn=2n+1-2,a1=0.
(1)求数列{an+1+an}的通项公式;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在三棱锥A-BCD中,已知AB⊥CD,BC⊥AD,如图所示,则点A在平面BCD内的射影O是△BCD(  )
A.三条中线的交点B.三角平分线的交点
C.三条高线的交点D.三垂直平分线的交点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设点F1(-c,0)、F2(c,0)分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)的左、右焦点,P为椭圆C上任意一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值为0.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l1:y=kx+m,l2:y=kx+n(直线l1、l2不重合),若l1、l2均与椭圆C相切,试探究在x轴上是否存在定点Q,使点Q到l1、l2的距离之积恒为1?若存在,请求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若在圆C:x2+y2=4内任取一点P(x,y),则满足$\left\{\begin{array}{l}{y<1}\\{y>{x}^{2}}\end{array}\right.$的概率=$\frac{1}{3π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,四棱锥P-ABCD中,四边形ABCD为矩形,平面PAD⊥平面ABCD.若∠BPC=90°,PB=$\sqrt{2}$,PC=2则四棱锥P-ABCD的体积最大值为$\frac{2\sqrt{6}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)满足:①定义域为R;②对任意x∈R,有f(x+2)=2f(x);③当x∈[-1,1]时,f(x)=$\sqrt{1-{x}^{2}}$.若函数g(x)=$\left\{\begin{array}{l}{{e}^{x}(x≤0)}\\{lnx(x>0)}\end{array}\right.$,则函数f(x)-g(x)在区间[-5,5]上的零点个数是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为10,5,4,则该三棱锥外接球的表面积为(  )
A.141πB.45πC.3$\sqrt{5}$πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=1-$\frac{a}{x}$-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线方程;
(Ⅱ)当a≥0时,记函数Γ(x)=$\frac{1}{2}$ax2+(1-2a)x+$\frac{a}{x}$-1+f(x),试求Γ(x)的单调递减区间;
(Ⅲ)设函数h(a)=3λa-2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,求h(a)的最大值.

查看答案和解析>>

同步练习册答案