精英家教网 > 高中数学 > 题目详情
1.在三棱锥A-BCD中,已知AB⊥CD,BC⊥AD,如图所示,则点A在平面BCD内的射影O是△BCD(  )
A.三条中线的交点B.三角平分线的交点
C.三条高线的交点D.三垂直平分线的交点

分析 由线面垂直得线线垂直,再由线线垂直得线面垂直,最后得线线垂直,从而得出答案.

解答 解:∵点A在平面BCD内的射影O
∴AO⊥CD,AO⊥BC
又∵AB⊥CD,BC⊥AD
∴CD⊥面ABO,BC⊥面ADO
∴BO⊥CD,DO⊥BC
∴O是△BCD三条高线的交点
故选C.

点评 本小题主要考查空间线面关系、空间想象能力和逻辑推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知圆C1:(x-a)2+y2=9,圆C2:(x-2)2+y2=4,以点C1、C2与A(0,2)围成的三角形的面积为5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.现有6人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有288种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图直角三角形ABC中,|CA|=|CB|,|AB|=3,点E、F分别在CA、CB上,且EF∥AB,AE=$\sqrt{2}$,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=(  )
A.3B.-3C.0D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列直线的斜率以及在y轴上的截距,并画出图形.
(1)3x+y-5=0;
(2)$\frac{x}{4}$-$\frac{y}{5}$=1;
(3)x+2y=0;
(4)7x-6y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-ax(a∈R).
(1)讨论函数f(x)的单调区间;
(2)若函数g(x)=$\left\{\begin{array}{l}{f(x)(0<x≤1)}\\{ax-1(-1≤x≤0)}\end{array}\right.$,且g(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,经过点F作倾斜角为135°的直线l交椭圆于A,B两点,线段AB的中点为M,直线AB与OM的夹角为θ,且tanθ=3,求这个椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,内角A、B、C的对边分别是a、b、c,若a2+b2=4a+2b-5,且a2=b2+c2-bc,则S△ABC=$\frac{{\sqrt{39}+\sqrt{3}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案