精英家教网 > 高中数学 > 题目详情
15.如图,四棱锥P-ABCD中,四边形ABCD为矩形,平面PAD⊥平面ABCD.若∠BPC=90°,PB=$\sqrt{2}$,PC=2则四棱锥P-ABCD的体积最大值为$\frac{2\sqrt{6}}{9}$.

分析 如图所示,作PO⊥AD,垂足为O,作OG⊥BC,垂足为G,连接GP.利用面面垂直的性质定理可得:PO⊥平面ABCD.在Rt△BPC中,可得$PG=\frac{BP•PC}{BC}$.设AB=x,则OG=x,可得PO=$\sqrt{P{G}^{2}-{OG}^{2}}$,利用VP-ABCD=$\frac{1}{3}PO•{S}_{ABCD}$,及其基本不等式的性质即可得出.

解答 解:如图所示,作PO⊥AD,垂足为O,作OG⊥BC,垂足为G,连接GP.
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD.
在△BPC中,∵∠BPC=90°,PB=$\sqrt{2}$,PC=2,∴BC=$\sqrt{B{P}^{2}+P{C}^{2}}$=$\sqrt{6}$.
∴$PG=\frac{BP•PC}{BC}$=$\frac{2\sqrt{3}}{3}$.
设AB=x,则OG=x,
PO=$\sqrt{P{G}^{2}-{OG}^{2}}$=$\sqrt{\frac{4}{3}-{x}^{2}}$,
∴VP-ABCD=$\frac{1}{3}PO•{S}_{ABCD}$=$\frac{1}{3}\sqrt{\frac{4}{3}-{x}^{2}}×$$\sqrt{6}$x,
∴V2=$\frac{2}{3}(\frac{4}{3}-{x}^{2}){x}^{2}$$≤\frac{2}{3}(\frac{\frac{4}{3}-{x}^{2}+{x}^{2}}{2})^{2}$=$(\frac{2}{3})^{3}$,当且仅当$x=\frac{\sqrt{6}}{3}$时取等号.
∴VP-ABCD≤$\frac{{2\sqrt{6}}}{9}$.

点评 本题考查了线面垂直的判定与性质定理、直角三角形的性质、勾股定理、矩形的性质、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设命题 p:函数f(x)=ex-1在R上为增函数;命题q:函数f(x)=cos(x+π)为奇函数.则下列命题中真命题是(  )
A.p∧qB.(¬p)∨qC.(¬p)∧(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-ax(a∈R).
(1)讨论函数f(x)的单调区间;
(2)若函数g(x)=$\left\{\begin{array}{l}{f(x)(0<x≤1)}\\{ax-1(-1≤x≤0)}\end{array}\right.$,且g(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数y=sin(2x-$\frac{π}{3}$)的图象向左移动$\frac{π}{3}$个单位,得到函数y=f(x)的图象,则函数y=f(x)的一个单调递增区间是(  )
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[-$\frac{π}{2}$,0]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,内角A、B、C的对边分别是a、b、c,若a2+b2=4a+2b-5,且a2=b2+c2-bc,则S△ABC=$\frac{{\sqrt{39}+\sqrt{3}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l1∥l2,在l1上取三点,l2上取两点,求由这五个点能确定平面的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线2x+y-2$\sqrt{5}$=0过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}-{y}^{2}=1$B.x2-$\frac{{y}^{2}}{4}=1$C.$\frac{{x}^{2}}{10}-\frac{{y}^{2}}{5}=1$D.$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.学校开展阳光体育活动,对学生的锻练时间进行随机抽样调查,从中随机抽取男、女生各25名进行了问卷调查,得到了如下列联表:
锻练时间男生女生合计
少于1小时51520
不少于1小时201030
合  计252550
(Ⅰ) 根据上表数据求x,y,并据此资料分析:有多大的把握可以认为“锻练时间与性别有关”?
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为(-∞,-3].

查看答案和解析>>

同步练习册答案