精英家教网 > 高中数学 > 题目详情
15.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤2}\\{x-y≤2}\end{array}\right.$,若不等式ax-y≤3恒成立,则实数a的取值范围为(  )
A.(-∞,4]B.(-∞,$\frac{3}{2}$]C.[$\frac{3}{2}$,2]D.[2,4]

分析 作出不等式组对应的平面区域,利用线性规划的知识进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
若ax-y≤3恒成立即y≥ax-3恒成立,
即平面区域ABC在直线y=ax-3的上方即可.
即C(2,0)在y=ax-3的上方或在直线上即可,
即2a≤3,解得a≤$\frac{3}{2}$,
故选:B

点评 本题主要考查线性规划的应用,根据条件ax-y≤3恒成立,得到平面区域ABC在直线y=ax-3的上方是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若P=$\frac{11}{12}$.则输出的n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线C:y2=4x的准线l的方程是x=-1;以C的焦点为圆心,且与直线l相切的圆的方程是(x-1)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人.现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生、本科生与研究生这三类学生中分别抽取(  )
A.55人,80人,45人B.40人,100人,40人C.60人,60人,60人D.50人,100人,30人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等比数列{an}的前n项和Sn=2n+r.
(Ⅰ)求实数r的值和{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn+1-bn=log2an+1,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.口袋中有6个小球,其中4个红球,2个白球,从袋中任取2个小球.
(I)求所取2个小球都是红球的概率;
(Ⅱ)求所取2个小球颜色不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.阅读如图所示的框图,运行相应的程序,则输出S的值为(  )
A.-1008B.-1007C.1007D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ax3+bx2+cx+d(a≠0)是R上的函数,其图象交x轴于A、B、C三点,且点B的坐标为(2,0),若函数f(x)在[-2,0]和[5,7]上均为单调函数,且f(x)在[-2,0]和[5,7]上的单调性相同,在[0,3]和[5,7]上的单调性相反.
(1)求实数c的值,并用a、b表示d;
(2)证明:曲线y=f(x)上不存在点M,使曲线在点M处的切线与直线x+3by+a=0垂直.

查看答案和解析>>

同步练习册答案