精英家教网 > 高中数学 > 题目详情
15.某区工商局、消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.
(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第2组或第4组的概率;
(Ⅱ)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女性的概率.

分析 (Ⅰ)设第2组[30,40)的频率为f2,利用概率和为1,求解即可.
(Ⅱ)设第1组[30,40)的频数n1,求出n1,记第1组中的男性为x1,x2,女性为y1,y2,y3,y4列出随机抽取3名群众的基本事件,列出至少有两名女性的基本事件,然后求解至少有两名女性的概率.

解答 (本小题满分12分)
解:(Ⅰ)设第2组[30,40)的频率为f2=1-(0.005+0.01+0.02+0.03)×10=0.35; …(3分)
第4组的频率为0.02×10=0.2
所以被采访人恰好在第2组或第4组的概率为P1=0.35+0.2=0.55…(6分)
(Ⅱ)设第1组[30,40)的频数n1,则n1=120×0.005×10=6…(7分)
记第1组中的男性为x1,x2,女性为y1,y2,y3,y4
随机抽取3名群众的基本事件是:(x1,x2,y1),(x1,x2,y2),(x1,x2,y3),(x1,x2,y4)(x1,y2,y1),(x1,y3,y2),(x1,y1,y3),(x1,y4,y1),(x1,y2,y4),(x1,y3,y4),(x2,y2,y1),(x2,y3,y2),(x2,y1,y3),(x2,y4,y1),(x2,y2,y4),(x2,y3,y4),(y1,y2,y3),(y1,y2,y4),(y2,y3,y4),(y1,y3,y4)共20种    …(10分)
其中至少有两名女性的基本事件是:(x1,y2,y1),(x1,y3,y2),(x1,y1,y3),(x1,y4,y1),(x1,y2,y4),(x1,y3,y4),(x2,y2,y1),(x2,y3,y2),(x2,y1,y3),(x2,y4,y1),(x2,y2,y4),(x2,y3,y4),(y1,y2,y3),(y1,y2,y4),(y2,y3,y4),(y1,y3,y4)共16种
所以至少有两名女性的概率为${P_2}=\frac{16}{20}=\frac{4}{5}$…(12分)

点评 本题考查古典概型概率公式的应用概率的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若在圆C:x2+y2=4内任取一点P(x,y),则满足$\left\{\begin{array}{l}{y<1}\\{y>{x}^{2}}\end{array}\right.$的概率=$\frac{1}{3π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,∠PCA=45°,E是PC的中点,F是PB的中点,G为线段PA上(除点P外)的一个动点.
(Ⅰ) 求证:BC∥平面GEF;
(Ⅱ) 求证:BC⊥GE;
(Ⅲ) 求三棱锥B-PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=Asin($ωx-\frac{π}{6})(A>0,ω>0)$的图象如图所示,则图中的阴影部分的面积为$\frac{{2-\sqrt{3}}}{2}$;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“0≤m≤1”是“函数f(x)=sinx+m-1有零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=1-$\frac{a}{x}$-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线方程;
(Ⅱ)当a≥0时,记函数Γ(x)=$\frac{1}{2}$ax2+(1-2a)x+$\frac{a}{x}$-1+f(x),试求Γ(x)的单调递减区间;
(Ⅲ)设函数h(a)=3λa-2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正六棱锥P-ABCDEF的底面边长为2,侧棱长为4,则此六棱锥的体积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算Cn1+2Cn2+3Cn3+…+nCnn,可以采用以下方法:构造等式:Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n,两边对x求导,得Cn1+2Cn2x+3Cn3x2+…+nCnnxn-1=n(1+x)n-1,在上式中令x=1,得Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1.类比上述计算方法,计算Cn1+22Cn2+32Cn3+…+n2Cnn=n(n+1)•2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{7}$,b=3,c=2,则A=$\frac{π}{3}$;△ABC的面积为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案