精英家教网 > 高中数学 > 题目详情
6.如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,∠PCA=45°,E是PC的中点,F是PB的中点,G为线段PA上(除点P外)的一个动点.
(Ⅰ) 求证:BC∥平面GEF;
(Ⅱ) 求证:BC⊥GE;
(Ⅲ) 求三棱锥B-PAC的体积.

分析 (I)利用三角形中位线定理可得:EF∥CB,利用线面平行的判定定理即可证明:BC∥平面GEF.
(Ⅱ)由PA⊥⊙O所在的平面,可得BC⊥PA,利用圆的直径的性质可得BC⊥AB,再利用线面垂直的判定定理与性质定理即可证明.
(III)由(Ⅱ)知BC⊥平面PAC,再利用圆的性质、直角三角形的边角关系、三棱锥的体积计算公式即可得出.

解答 (I)证明:∵E是PC的中点,F是PB的中点,
∴EF∥CB,EF?平面GEF,
点G不于点P重合,CB?平面GEF,
∴BC∥平面GEF.
(Ⅱ)证明:∵PA⊥⊙O所在的平面,
BC?⊙O所在的平面,
∴BC⊥PA,
又∵AB是⊙O的直径,
∴BC⊥AB,
又PA∩AC=A,∴BC⊥平面PAC,
∴GE?平面PAC,∴BC⊥GE.
(III)解:在Rt△ABC中,AB=2,AB=CB,∴AB=BC=$\sqrt{2}$,
∵PA⊥平面ABC,AC?平面ABC,
∴PA⊥AC.
∵∠PCA=45°,
∴PA=$\sqrt{2}$,
∴S△PAC=$\frac{1}{2}PA•AC$=1,
由(Ⅱ)知BC⊥平面PAC,
∴VB-PAC=$\frac{1}{3}{S}_{△PAC}•BC$=$\frac{\sqrt{2}}{3}$.

点评 本题主要考查空间线线、线面的位置关系、体积的计算、圆的性质、直角三角形的边角关系等基础知识;考查空间想象能力、运算求解能力及推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求下列直线的斜率以及在y轴上的截距,并画出图形.
(1)3x+y-5=0;
(2)$\frac{x}{4}$-$\frac{y}{5}$=1;
(3)x+2y=0;
(4)7x-6y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$=(x-1,2),$\overrightarrow{b}$=(4,y)(x,y为正),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则xy的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合S={x|x>-3},T={x|-6≤x≤1},则S∪T=(  )
A.[-6,+∞)B.(-3,+∞)C.[-6,1]D.(-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面内,曲线C上存在点P,使点P到点A(3,0),B(-3,0)的距离之和为10,则称曲线C为“有用曲线”.以下曲线不是“有用曲线”的是(  )
A.x+y=5B.x2+y2=9C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1D.x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\|{log_2}x|,\;x>0\end{array}\right.$,则使f(x)=2的x的集合是(  )
A.$\{\frac{1}{4},4\}$B.{1,4}C.$\{1,\frac{1}{4}\}$D.$\{1,\frac{1}{4},4\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某区工商局、消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.
(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第2组或第4组的概率;
(Ⅱ)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=${cos^2}({x-\frac{π}{6}})$的单调增区间是(  )
A.$({-\frac{π}{3}+kπ,\frac{π}{6}+kπ})({k∈Z})$B.$({\frac{π}{6}+kπ,\frac{2π}{3}+kπ})({k∈Z})$
C.$({-\frac{π}{3}+2kπ,\frac{π}{6}+2kπ})({k∈Z})$D.$({\frac{π}{6}+2kπ,\frac{2π}{3}+2kπ})({k∈Z})$

查看答案和解析>>

同步练习册答案