精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\|{log_2}x|,\;x>0\end{array}\right.$,则使f(x)=2的x的集合是(  )
A.$\{\frac{1}{4},4\}$B.{1,4}C.$\{1,\frac{1}{4}\}$D.$\{1,\frac{1}{4},4\}$

分析 利用分段函数通过f(x)=2求出x的值即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\|{log_2}x|,\;x>0\end{array}\right.$,
当x≤0时,2x=2,可得x=1(舍去).
当x>0时,|log2x|=2,即log2x=±2,解得x=4,或x=$\frac{1}{4}$.
使f(x)=2的x的集合是$\{\frac{1}{4},4\}$.
故选:A.

点评 本题考查分段函数的应用,函数的零点的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(x+$\frac{π}{4}$),x∈R.
(1)求函数f(x)的最小正周期;
(2)若θ∈(0,π),且f(0)=f(θ),求θ的值;
(3)若f(α-$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,f(β-$\frac{π}{4}$)=$\frac{10}{13}$,α,β∈(0,$\frac{π}{2}$)求sin(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=|x+a|-2x(a<0),若f(x)≤0的解集M⊆{x|x≥2},则实数a的取值范围是(-∞,-6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,∠PCA=45°,E是PC的中点,F是PB的中点,G为线段PA上(除点P外)的一个动点.
(Ⅰ) 求证:BC∥平面GEF;
(Ⅱ) 求证:BC⊥GE;
(Ⅲ) 求三棱锥B-PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=Asin($ωx-\frac{π}{6})(A>0,ω>0)$的图象如图所示,则图中的阴影部分的面积为$\frac{{2-\sqrt{3}}}{2}$;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“0≤m≤1”是“函数f(x)=sinx+m-1有零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正六棱锥P-ABCDEF的底面边长为2,侧棱长为4,则此六棱锥的体积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点A(-a,0),B(a,0),若圆 (x-3)2+(y-4)2=1上存在点P.使得∠APB=90°,则正数a的取值范围为(  )
A.[4,6]B.[5,6]C.[4,5]D.[3,6]

查看答案和解析>>

同步练习册答案