精英家教网 > 高中数学 > 题目详情
已知数列{an}满足3nan+1=(an+2n)(n+1),n∈N+,且a1=
4
3

(Ⅰ)设数列{bn}满足bn=
an
n
-1,求证:数列{bn}是等比数列;
(Ⅱ)若Sn为数列{an}的前n项和,求证:4Sn<2n2+2n+3.
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出bn+1=
an+1
n+1
-1
=
1
3
(
an
n
-1)
=
1
3
bn
,由此能证明{bn}是以
1
3
为公比的等比数列.
(Ⅱ)由(1)知an=
n
3n
+n
,由此利用裂顶求和法求出4Sn=3-
3
3n
-
2n
3n
+2n(n+1),由此能证明4Sn<2n2+2n+3.
解答: (Ⅰ)证明:∵bn=
an
n
-1,3nan+1=(an+2n)(n+1),
bn+1=
an+1
n+1
-1

=
(an+2n)(n+1)
3n
n+1
-1

=
an+2n
3n
-1

=
an
3n
+
2
3
-1

=
1
3
an
n
-
1
3

=
1
3
(
an
n
-1)
=
1
3
bn

∴{bn}是以
1
3
为公比的等比数列.(6分)
(Ⅱ)证明:由(1)知
an
n
-1=(
a1
1
-1)•(
1
3
)n-1
=(
1
3
)n

an=
n
3n
+n
,(7分)
Sn=(
1
3
+1)+(
2
32
+2)+(
3
33
+3)
+…+(
n
3n
+n

=(
1
3
+
2
32
+
3
33
+…+
n
3n
)+(1+2+3+…+n),(8分)
设Tn=
1
3
+
1
32
+
3
33
+…+
n
3n
,①
1
3
Tn
=
1
32
+
2
33
+…+
n
3n+1
,②
①-②得:
2
3
Tn
=
1
3
+
1
32
+…+
1
3n
-
n
3n+1

=
1
2
(1-
1
3n
)-
n
3n+1

∴Tn=
3
4
(1-
1
3n
)
-
n
3n
,(11分)
Sn=Tn+
n(n+1)
2
=
3
4
(1-
1
3n
)
-
n
3n
+
n(n+1)
2
,(12分)
即4Sn=3-
3
3n
-
2n
3n
+2n(n+1)
=2n2+2n+3-
2n+3
3n

<2n2+2n+3.
∴4Sn<2n2+2n+3.(14分)
点评:本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平行六面体ABCD-A1B1C1D1中,P为其体对角线的交点,问过P能够做多少个平面,使其与平行六面体的12条棱所成角相等(  )
A、0B、4C、8D、无数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-1+
a
ex
(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于直线y=x-1,求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x.
(Ⅰ)若f(x)在[-3,a]上单调递减,求实数a的取值范围;
(Ⅱ)若存在实数t,当x∈[1,m],f(x+t)≤3x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且
2b-
3
c
3
a
=
cosC
cosA

(1)求角A的值;
(2)若∠B=
π
6
,BC边上中线AM=
7
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mlnx,h(x)=x-a.
(1)若a=0时,当x∈(1,+∞)时,f(x)的图象总在h(x)的图象的下方,求m的取值范围;
(2)当m=2时,函数g(x)=f(x)-h(x)在[1,4]上恰有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+(m+1)x+m-1的图象经过原点,求f(x)<0时的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+x,x∈R
(1)不必证明,直接写出f(x)在R上的单调性;
(2)证明:f(x)是奇函数;
(3)解关于t的不等式f(1-t)+f(2t-3)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=3,π<α<
2
,求sin(
π
2
+α)+sin(π+α)的值
(2)证明:
1-2sinxcosx
cos2x-sin2x
=
1-tanx
1+tanx

查看答案和解析>>

同步练习册答案