| A. | (0,1) | B. | $(0,\frac{3}{2})$ | C. | (1,2) | D. | $(1,\frac{3}{2})∪$$(\frac{3}{2},2)$ |
分析 作出f(x)的图象,利用换元法结合一元二次函数的图象和性质即可.
解答
解:作出f(x)的图象如图:设t=f(x),
则方程等价为2t2-(2a+3)t+3a=0,
由图象可知,
若关于x的方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,
∴即要求对应于f(x)等于某个常数有3个不同实数解,
∴故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=a时,它有三个根.
所以有:1<a<2 ①.
再根据2f2(x)-(2a+3)f(x)+3a=0有两个不等实根,
则判别式△=(2a+3)2-4×2×3a>0,
解得a≠$\frac{3}{2}$,
故1<a<$\frac{3}{2}$或$\frac{3}{2}$<x<2,
故选:D.
点评 本题主要考查函数和方程的应用,利用换元法结合一元二次函数的图象和性质,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com