精英家教网 > 高中数学 > 题目详情
12.计算:
(1)$\root{5}{{{{({-5})}^5}}}+\root{4}{{{{({-4})}^4}}}$;
(2)${(2\frac{1}{4})^{\frac{3}{2}}}+{0.2^{-2}}-{π^0}+{(\frac{1}{27})^{-\;\;\frac{1}{3}}}$.

分析 (1)(2)利用指数的运算性质即可得出.

解答 解:(1)原式=(-5)+|-4|=-5+4=-1.
(2)${(2\frac{1}{4})^{\frac{3}{2}}}+{0.2^{-2}}-{π^0}+{(\frac{1}{27})^{-\;\;\frac{1}{3}}}$
=${[{{{({\frac{3}{2}})}^2}}]^{\frac{3}{2}}}+{({\frac{1}{5}})^{-2}}-1+{({3^{-3}})^{-\;\;\frac{1}{3}}}$
=${({\frac{3}{2}})^3}+25-1+3$
=$30\frac{3}{8}$
=$\frac{243}{8}$.

点评 本题考查了指数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届广西南宁二中等校高三8月联考数学(文)试卷(解析版) 题型:选择题

设集合,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.sinx=$\frac{1}{7}$,x∈[$\frac{π}{2}$,π],则x=π-arcsin$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知Sn是等差数列{an}的前n项和,若4S6+3S8=96,则S7=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x(x>0)}\\{g(x)(x<0)}\end{array}}\right.$,若f(x)为奇函数,则$g(-\frac{1}{4})$的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{{2}^{-|x-1|}+1,(x≠1)}\\{a,(x=1)}\end{array}\right.$,若关于x的方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,则a的取值范围是(  )
A.(0,1)B.$(0,\frac{3}{2})$C.(1,2)D.$(1,\frac{3}{2})∪$$(\frac{3}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列求导数运算正确的是(  )
A.${(x+\frac{1}{x})^'}=1+\frac{1}{x^2}$B.(lgx)′=$\frac{1}{xlge}$C.(3x)′=3xln3D.(x2cosx)′=-2xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明下列不等式:
(1)已知a>b,e>f,c>0,求证f-ac<e-bc
(2)已知a>b>0,c<d<0,求证:$\root{3}{\frac{a}{d}}$<$\root{3}{\frac{b}{c}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等比数列{an}的前n项和为Sn,且S2+a2,S1+2a2,S3+a3,成等差数列,则数列{an}的公比为(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案