分析 (1)(2)利用不等式的基本性质即可证明.
解答 证明:(1)∵a>b,c>0,∴ac>bc,-ac<-bc,
又e>f,即f<e,∴f-ac<e-bc.
(2)∵c<d<0,
∴$\frac{1}{d}<\frac{1}{c}<$0,∴$-\frac{1}{d}>-\frac{1}{c}>$0,
又a>b>0,
∴$-\frac{a}{d}>-\frac{b}{c}$,
∴$\frac{a}{d}<\frac{b}{c}$,
∴$\root{3}{\frac{a}{d}}$<$\root{3}{\frac{b}{c}}$.
点评 本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com