精英家教网 > 高中数学 > 题目详情
13.已知复数z1=3+4i,z2=1+i,则z1-z2=2+3i.

分析 利用复数的运算法则即可得出.

解答 解:z1-z2=3+4i-(1+i)=2+3i,
故答案为:2+3i.

点评 本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.sinx=$\frac{1}{7}$,x∈[$\frac{π}{2}$,π],则x=π-arcsin$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列求导数运算正确的是(  )
A.${(x+\frac{1}{x})^'}=1+\frac{1}{x^2}$B.(lgx)′=$\frac{1}{xlge}$C.(3x)′=3xln3D.(x2cosx)′=-2xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明下列不等式:
(1)已知a>b,e>f,c>0,求证f-ac<e-bc
(2)已知a>b>0,c<d<0,求证:$\root{3}{\frac{a}{d}}$<$\root{3}{\frac{b}{c}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}的公差d>0,则下列四个命题:
①数列{an}是递增数列;             
②数列{nan}是递增数列;
③数列$\left\{{\frac{a_n}{n}}\right\}$是递增数列;            
④数列{an+3nd}是递增数列;
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),…,其中n∈N,则f19($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)|$\overrightarrow{a}$-2$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等比数列{an}的前n项和为Sn,且S2+a2,S1+2a2,S3+a3,成等差数列,则数列{an}的公比为(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算$\frac{lg32-lg4}{lg2}+{({27})^{\frac{2}{3}}}$=12.

查看答案和解析>>

同步练习册答案