分析 直接利用向量求解共线向量,利用共线向量平行于垂直的充要条件列出方程求解即可.
解答 解:$\overrightarrow a=(3,2),\;\overrightarrow b=({-1,2}),\overrightarrow c=({4,1})$,可得$\overrightarrow{a}+k\overrightarrow{c}$=(3+4k,2+k).$(2\overrightarrow{b}-\overrightarrow{a})k$=(-5k,2k)
若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b-\overrightarrow a)k$,可得-5k(2+k)=2k(3+4k),解得k=-$\frac{16}{13}$,或k=0.
若$(\overrightarrow a+k\overrightarrow c)⊥(2\overrightarrow b-\overrightarrow a)k$,可得-5k(3+4k)+2k(2+k)=0.
则实数k=$-\frac{11}{18}$,或k=0.
故答案为:-$\frac{16}{13}$或0;$-\frac{11}{18}$或0.
点评 本题考查向量的共线与垂直的应用,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | $(0,\frac{3}{2})$ | C. | (1,2) | D. | $(1,\frac{3}{2})∪$$(\frac{3}{2},2)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{3}$-$\sqrt{2}$,4-$\sqrt{13}$) | B. | (8-2$\sqrt{15}$,4-$\sqrt{13}$) | C. | (5-2$\sqrt{6}$,4-2$\sqrt{3}$) | D. | (8-2$\sqrt{15}$,4-2$\sqrt{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com