精英家教网 > 高中数学 > 题目详情
4.设f(x,y,z)=sin2(x-y)+sin2(y-z)+sin2(z-x),x,y,z∈R,求f(x,y,z)的最大值.

分析 由三角函数公式配方可得f(x,y,z)=$\frac{3}{2}$-$\frac{1}{4}$[(cos2x+cos2y+cos2z)2+(sin2x+sin2y+sin2z+sin2z)2-3],由二次函数可得.

解答 解:f(x,y,z)=sin2(x-y)+sin2(y-z)+sin2(z-x)
=$\frac{1}{2}$[1-cos(2x-2y)]+$\frac{1}{2}$[1-cos(2y-2z)]+$\frac{1}{2}$[1-cos(2z-2x)]
=$\frac{3}{2}$-$\frac{1}{2}$[cos(2x-2y)+cos(2y-2z)+cos(2z-2x)]
=$\frac{3}{2}$-$\frac{1}{2}$(cos2xcos2y+cos2ycos2z+cos2zcos2x+sin2xsin2y+sin2ysin2z+sin2zsin2x)
=$\frac{3}{2}$-$\frac{1}{4}$[(cos2x+cos2y+cos2z)2+(sin2x+sin2y+sin2z)2-3]
∴当cos2x+cos2y+cos2z=sin2x+sin2y+sin2z=0时,上式取最大值$\frac{9}{4}$

点评 本题考查三角函数的最值,涉及三角函数公式和配方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.($\frac{1+i}{{\sqrt{2}}}$)2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆(x-a)2+(y-b)2=r2的圆心在x轴上,且与y轴相切,则下面关系中一定成立的是(  )
A.a=0且b=0B.b=0且r=|a|C.b=0且r=aD.b=0且r=-a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.空间四边形(四条边不在同一平面的四边形)中异面直线的对数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.袋中有10个大小形状完全相同的小球,其中6个红球,4个白球,每次从中任意摸出一个小球,连续摸三次.
(1)若采取不放回抽样方式,求摸出的三球中至少有两个红球的概率;
(2)若采取有放回抽样方式,求摸出的三球中红球少于两个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点O是△ABC的外心,a、b、c分别为角A、B、C的对边,2c2-c+b2=0,则$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范围是(  )
A.[-$\frac{1}{4}$,2)B.(-$\frac{1}{8}$,0)C.(-$\frac{1}{8}$,$\frac{1}{24}$]D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow a=(3,2),\;\overrightarrow b=({-1,2}),\overrightarrow c=({4,1})$,若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b-\overrightarrow a)k$,则实数k的值-$\frac{16}{13}$或0,若$(\overrightarrow a+k\overrightarrow c)⊥(2\overrightarrow b-\overrightarrow a)k$,则实数k的值$-\frac{11}{18}$或0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=2x+log3x的导数是$y'={2^x}ln2+\frac{1}{xln3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\sqrt{\sqrt{3}tanx-3}$的定义域为$\{x|kπ+\frac{π}{3}≤x<kπ+\frac{π}{2},k∈Z\}$.

查看答案和解析>>

同步练习册答案