精英家教网 > 高中数学 > 题目详情
7.有6本不同的书分给四人,每人至少一本,则有1560种不同的分配方案.(数字作答)

分析 根据题意,先把6本不同的书分成4组,每组至少一本,分“4个组的书的数量按3、1、1、1分配“和“按2、2、1、1分配”2种情况讨论,由加法原理求得共有65种方法;再把这4组书分给4个人,由分步计数原理计算可得答案.

解答 解:先把6本不同的书分成4组,每组至少一本.
若4个组的书的数量按3、1、1、1分配,则不同的分配方案有$\frac{{C}_{6}^{3}{C}_{3}^{1}{C}_{2}^{1}{C}_{1}^{1}}{{A}_{3}^{3}}$=20种,
若4个组的书的数量按2、2、1、1分配,则不同的分配方案有$\frac{{C}_{6}^{2}{C}_{4}^{2}{C}_{2}^{1}{C}_{2}^{1}}{{A}_{2}^{2}{A}_{2}^{2}}$=45种,
故所有的分组方法共有20+45=65种.
再把这4组书分给4个人,不同的方法有A44=24种,
则共有65×24=1560种种不同的分配方案,
故答案为:1560.

点评 本题主要考查排列、组合以及简单计数原理的应用,注意分类讨论时做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若$\vec a=({4,-2}),\vec b=({k,-1})$,且$\vec a⊥\vec b$,则k=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将数字“123367”重新排列后得到不同的偶数个数为(  )
A.72B.120C.192D.240

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面内给定三个向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(2,1).
(1)求满足$\overrightarrow{a}$=m$\overrightarrow{b}$+n$\overrightarrow{c}$的实数m,n;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=(2x+5)6,在函数f'(x)中x3的系数是(  )
A.2000B.12000C.24000D.非以上答案

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,直线$ρcos(θ-\frac{π}{4})=\sqrt{2}$与曲线$ρ=\sqrt{2}$的公共点个数是(  )
A.0B.1C.2D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知平行四边形ABCD的三个顶点A(2,1),B(3,2),D(-1,4),且F为AB中点,则$\overrightarrow{CF}$=(  )
A.($\frac{5}{2}$,-$\frac{7}{2}$)B.($\frac{5}{2}$,$\frac{7}{2}$)C.($\frac{3}{2}$,-$\frac{7}{2}$)D.($\frac{3}{2}$,$\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知-π<x<0,sinx+cosx=$\frac{1}{5}$,
(1)求sinx-cosx的值;
(2)求$\frac{{2{{sin}^2}x+2sinx•cosx}}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双语测试中,至少有一科得A才能通过测试,已知某同学语文得A的概率为0.8,英语得A的概率为0.9,两者互不影响,则该同学通过测试的概率为0.97.

查看答案和解析>>

同步练习册答案