精英家教网 > 高中数学 > 题目详情
下列函数中,x=0是极值点的函数是(  )
A、y=-x3
B、y=-cosx
C、y=tanx-x
D、y=
1
x
考点:利用导数研究函数的极值
专题:导数的概念及应用
分析:分别对y=-x3、y=-cosx、y=tanx-x和y=
1
x
求导函数y′,再判定函数在它的定义域上的增减性,确定x=0是不是函数的极值点.
解答: 解:①∵y=-x3,∴y′=-2x2≤0,∴函数在x∈R上是减函数,∴x=0不是函数的极值点;
②∵y=-cosx,∴y′=sinx,当0<x<π时,y′>0,是增函数,当-π<x<0时,y′<0,是减函数,∴x=0是函数的极值点;
③∵y=tanx-x,∴y′=
1
cos2x
-1≥0,∴函数在它的定义域上是增函数,∴x=0不是函数的极值点;
④∵y=
1
x
,y′=-
1
x2
<0,∴函数在它的定义域上是减函数,∴x=0不是函数的极值点;
故选:B.
点评:本题考查了利用导数判定函数的单调性来求极值的问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=lnx,若0<c<b<a<1,则
f(a)
a
f(b)
b
f(c)
c
的大小关系为(  )
A、
f(a)
a
f(b)
b
f(c)
c
B、
f(c)
c
f(b)
b
f(a)
a
C、
f(b)
b
f(a)
a
f(c)
c
D、
f(a)
a
f(c)
c
f(b)
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,-1),
b
=(-2,3),则
a
-2
b
=(  )
A、(-6,7)
B、(-2,5)
C、(0,-2)
D、(6,-7)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的焦距长为2c,过原点O作圆:(x-c)2+y2=b2的两条切线,切点分别是A,B,且∠AOB=120°,那么该双曲线的离心率为(  )
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若三角形的三条边长分别为3,4,5,则将每条边长增加相同的长度后所得到的新三角形为(  )
A、直角三角形B、钝角三角形
C、锐角三角形D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知棱长为1的正方体ABCD-A1B1C1D1中,P,Q是面对角线A1C1上的两个不同动点.则以下结论不成立的是(  )
A、存在P,Q两点,使BP⊥DQ
B、存在P,Q两点,使BP,DQ与直线B1C都成45°的角
C、若|PQ|=1,则四面体BDPQ的体积一定是定值
D、若|PQ|=1,则四面体BDPQ在该正方体六个面上的正投影的面积的和为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

3x
-
2
x
8二项展开式中的常数项为(  )
A、112B、-112
C、56D、-56

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是各项均为正数的等比数列,且
1
an
+
1
an+1
=
3
2n
(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=an2+log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且|MN|=3,己知椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)的焦距等于2|ON|,离心率e=
1
2

(1)求圆C和椭圆D的方程;
(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.

查看答案和解析>>

同步练习册答案