精英家教网 > 高中数学 > 题目详情
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且|MN|=3,己知椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)的焦距等于2|ON|,离心率e=
1
2

(1)求圆C和椭圆D的方程;
(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知条件求出圆C的方程为(x-
5
2
)2+(y-2)2=
25
4
,令y=0,得N(1,0),M(4,0),由
2c=2
a=
c
a
=
1
2
,能求出椭圆D的方程.
(Ⅱ)设直线l的方程为y=k(x-4),由
x2
4
+
y2
3
=1
y=k(x-4)
,得(3+4k2)x2-32k2x+64k2-12=0,设A(x1,y1),B(x2,y2),则x1+x2=
32k2
3+4k2
x1x2=
64k2-12
3+4k2
,由此能证明直线AN与直线BN的倾斜角互补.
解答: (1)解:设圆半径为r,由题意圆心为(r,2),
∵|MN|=3,∴r2=(
3
2
)2+22=
25
4

∴圆C的方程为(x-
5
2
)2+(y-2)2=
25
4
,①
在①中,令y=0,得x=1或x=4,∴N(1,0),M(4,0),
2c=2
a=
c
a
=
1
2
,得c=1,a=2,b2=4-2=3,
∴椭圆D的方程为
x2
4
+
y2
3
=1

(Ⅱ)证明:设直线l的方程为y=k(x-4),
x2
4
+
y2
3
=1
y=k(x-4)
,得(3+4k2)x2-32k2x+64k2-12=0,(*)
设A(x1,y1),B(x2,y2),则x1+x2=
32k2
3+4k2
x1x2=
64k2-12
3+4k2

∵kNA+kNB=
y1
x1-1
+
y2
x2-1
=
k(x1-4)
x1-1
+
k(x2-4)
x2-1

=k
(x1-4)(x2-1)+(x2-4)(x1-1)
(x1-1)(x2-1)

=
k
(x1-1)(x2-1)
[
2(64k2-12)
3+4k2
-
160k2
3+4k2
+8]=0

∴kNA=-kNB
当x1=1或x2=1时,k=±1,
此时,对方程(*),△=0,不合题意.
∴直线AN与直线BN的倾斜角互补.
点评:本题考查圆的方程和椭圆方程的求法,考查两直线的倾斜角互补的证明,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,x=0是极值点的函数是(  )
A、y=-x3
B、y=-cosx
C、y=tanx-x
D、y=
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)解不等式|2x-1|+|x+1|≥x+2;
(2)已知x,y,z为正实数,求3(x2+y2+z2)+
2
x+y+z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别是a,b,c,cos(C+
π
4
)+cos(C-
π
4
)=
2
2

(1)求角C的大小;
(2)若c=2
3
,a=2b,求边a,b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1,(a>b>0)的右焦点为F(c,0),M为椭圆的上顶点,O为坐标原点,且以焦点和短轴的端点为顶点构成边长为
2
的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线l交椭圆于P,Q两点,且使F为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,|
AD
|=1,|
AB
|=2,|2
AB
-
AD
|=
13

(Ⅰ)求∠BAD;
(Ⅱ)若M,N分别是边BC,CD上的点,且满足
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
,求
AM
AN
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

投掷四枚不同的金属硬币A、B、C、D,假定A、B两枚正面向上的概率均为
1
2
,另两枚C、D为非均匀硬币,正面向上的概率均为a(0<a<1),把这四枚硬币各投掷一次,设?表示正面向上的枚数.
(Ⅰ)若A、B出现一枚正面向上一枚反面向上与C、D出现两枚正面均向上的概率相等,求a的值;
(Ⅱ)求?的分布列及数学期望(用a表示);
(Ⅲ)若出现2枚硬币正面向上的概率都不小于出现1枚和3枚硬币正面向上的概率,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C:x2+y2=1在矩阵A=
a   0
0   b
(a>0,b>0)对应的变换下变成椭圆E:
x2
4
+
y2
3
=1.
(Ⅰ)求a,b的值;
(Ⅱ)判断矩阵A是否可逆,如果可逆,求矩阵A的逆矩阵A-1,如不可逆,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
sin(
π
2
+α)cos(
π
2
-α)
cos(π+α)
+
sin(π-α)cos(
π
2
+α)
sin(π+α)

查看答案和解析>>

同步练习册答案