精英家教网 > 高中数学 > 题目详情
化简:
sin(
π
2
+α)cos(
π
2
-α)
cos(π+α)
+
sin(π-α)cos(
π
2
+α)
sin(π+α)
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:由条件利用诱导公式进行化简要求的式子,可得结果.
解答: 解:
sin(
π
2
+α)cos(
π
2
-α)
cos(π+α)
+
sin(π-α)cos(
π
2
+α)
sin(π+α)
=
cosα•sinα
-cosα
+
sinα(-sinα)
-sinα
=-sinα+sinα=0.
点评:本题主要考查利用诱导公式进行化简求值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且|MN|=3,己知椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)的焦距等于2|ON|,离心率e=
1
2

(1)求圆C和椭圆D的方程;
(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比.
(1)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{
1
anan+2
}的前n项和,若Tn≤λ对?n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x3-ax+1.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)在区间[-1,2]内至少存在一个实数x,使得f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=a+bi(a,b∈R,a>0),满足|z|=
10
,且复数(1-2i)z在复平面上对应的点在第二、四象限的角平分线上.
(Ⅰ)求复数z;
(Ⅱ)若
.
z
+
m+i
1-i
(m∈R)为纯虚数,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
3
sinx-cosx=0(x∈[0,2π])的所有解之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=
2
2
t
y=1+
2
2
t
(t为参数),圆M的直角坐标方程为(x-a)2+(y-b)2=1,且圆M上的点到直线l的最小距离为1.
(1)求a-b的值;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆N的极坐标方程为ρ=2cosθ,当a=1,b=1时,求圆M和圆N公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上一点,Q为圆C:(x+2)2+(y-2)2=1上一点,点P到直线l:x=-1的距离为d,则|PQ|+d的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知c2-a2=5b,3sinAcosC=cosAsinC,则b=
 

查看答案和解析>>

同步练习册答案