精英家教网 > 高中数学 > 题目详情
7.设△ABC的角A,B,C所对的边分别是a,b,c,且a2+c2+ac-b2=0,则角B是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 利用余弦定理即可得出.

解答 解:∵a2+c2+ac-b2=0,
由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{-ac}{2ac}$=-$\frac{1}{2}$,
B∈(0,π),解得B=$\frac{2π}{3}$.
故选:C.

点评 本题考查了余弦定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.直线y=x-1被抛物线y2=8x截得线段的中点纵坐标为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若sin($\frac{π}{6}$-α)=$\frac{3}{5}$,则cos($\frac{2π}{3}$+2α)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{7}{25}$D.-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:方程$\frac{{x}^{2}}{1-2m}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线;命题q:?x0∈R,x02+2mx0+2-m=0
已知“p∨q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知平面向量$\overrightarrow{a}$=(1,-$\sqrt{3}$),$\overrightarrow{b}$=(3,$\sqrt{3}$),则向量$\overrightarrow{a}$与向量$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=sin2 x+2cos2x-cosx+2.
(1)若x∈[$\frac{π}{4}$,$\frac{π}{2}$]求函数f(x)的最值及对应的x的值;
(2)若不等式[f(x)-m]2<1在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知两点F1(-$\sqrt{3}$,0)和F2($\sqrt{3}$,0),动点P满足|$\overrightarrow{O{F_1}}$+$\overrightarrow{OP}$|+|$\overrightarrow{O{F_2}}$+$\overrightarrow{OP}$|=4.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)设曲线C上的两点M,N在x轴上方,且F1M∥F2N,若以MN为直径的圆恒过点(0,2),求F1M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ax3+bsinx+m-3是定义在[n,n+6]上的奇函数,则m+n=$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{7}$,则$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案