精英家教网 > 高中数学 > 题目详情
19.已知两点F1(-$\sqrt{3}$,0)和F2($\sqrt{3}$,0),动点P满足|$\overrightarrow{O{F_1}}$+$\overrightarrow{OP}$|+|$\overrightarrow{O{F_2}}$+$\overrightarrow{OP}$|=4.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)设曲线C上的两点M,N在x轴上方,且F1M∥F2N,若以MN为直径的圆恒过点(0,2),求F1M的方程.

分析 (Ⅰ)由向量的坐标表示,分别表示出$\overrightarrow{O{F_1}}$+$\overrightarrow{OP}$和$\overrightarrow{O{F_2}}$+$\overrightarrow{OP}$,根据模长公式,代入即可求得动点P的轨迹C的方程;
(Ⅱ)设出直线方程,根据椭圆的对称性求得N点坐标,代入椭圆方程,由韦达定理求得y1+y2和y1y2,分别表示出$\overrightarrow{RM}$和$\overrightarrow{RN}$,由以MN为直径的圆恒过点(0,2),可知$\overrightarrow{RM}$•$\overrightarrow{RN}$=0,即可求得m的值,求得F1M的方程.

解答 解:(Ⅰ)设P(x,y),则$\overrightarrow{O{F_1}}+\overrightarrow{OP}=(x-\sqrt{3},y),\overrightarrow{O{F_2}}+\overrightarrow{OP}=(x+\sqrt{3},y)$,
$|\overrightarrow{O{F_1}}+\overrightarrow{OP}|+|\overrightarrow{O{F_2}}+\overrightarrow{OP}|=4?\sqrt{{{(x-\sqrt{3})}^2}+{y^2}}+\sqrt{{{(x+\sqrt{3})}^2}+{y^2}}=4$,
由椭圆的定义知:动点P的轨迹C的方程为$\frac{x^2}{4}+{y^2}=1$.(4分)
(Ⅱ)设直线F1M:x=my-$\sqrt{3}$,且与曲线C的另一个交点为N',
设M(x1,y1),N'(x2,y2),由F1M∥F2N及椭圆的对称性知:N(-x2,-y2)…(6分)
联立$\left\{\begin{array}{l}{x=my-\sqrt{3}}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,整理得:(m2+4)y2-2$\sqrt{3}$my-1=0,
△=16(m2+1)>0,则y1+y2=$\frac{2\sqrt{3}m}{{m}^{2}+4}$,y1y2=-$\frac{1}{{m}^{2}+4}$,y1-y2=|y1-y2|=$\frac{4\sqrt{{m}^{2}+1}}{{m}^{2}+4}$,
∵$\overrightarrow{RM}$=(x1,y1-2)=(my1-$\sqrt{3}$,y1-2),$\overrightarrow{RN}$=(-x2,-y2-2)=(-my2+$\sqrt{3}$,-y2-2),
∴$\overrightarrow{RM}$•$\overrightarrow{RN}$=(my1-$\sqrt{3}$)•(-my2+$\sqrt{3}$)+(y1-2)(-y2-2)=0,
即-(m2+1)y1y2+$\sqrt{3}$m(y1+y2)-2(y1-y2)+1=0,
于是m2+1+6m2-8$\sqrt{{m}^{2}+1}$+m2+4=0,
解得m=±$\frac{\sqrt{4\sqrt{10}-2}}{4}$,
所以直线F1M的方程是x=±$\frac{\sqrt{4\sqrt{10}-2}}{4}$y-$\sqrt{3}$.

点评 本题考查椭圆方程的求解及直线与椭圆的位置关系,考查向量的坐标运算,韦达定理,考查考生的运算求解能力及分析问题、解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.α为锐角,若cos(α+$\frac{π}{6}}$)=$\frac{4}{5}$,则sin($\frac{2π}{3}-2α}$)=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.Rt△ABC中,AB=AC,以C点为一个焦点作一个椭圆,使这个椭圆的另一个焦点在边AB上,且椭圆过A、B两点,则这个椭圆的离心率为$\sqrt{6}-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设△ABC的角A,B,C所对的边分别是a,b,c,且a2+c2+ac-b2=0,则角B是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q为PD的中点.
(Ⅰ)证明:CQ∥平面PAB;
(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P(3,3),Q(3,-3),O为坐标原点,动点M(x,y)满足$\left\{\begin{array}{l}{|\overrightarrow{OP}•\overrightarrow{OM}|≤12}\\{|\overrightarrow{OQ}•\overrightarrow{OM}|≤12}\end{array}\right.$,则点M所构成的平面区域的内切圆和外接圆半径之比为(  )
A.$\frac{1}{\sqrt{2}}$B.$\frac{1}{2}$C.$\frac{1}{2\sqrt{2}}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=4x,过其焦点F作两条相互垂直且不平行于坐标轴的直线,它们分别交抛物线C于点P1、P2和点P3、P4,线段P1P2、P3P4的中点分别为M1、M2
(Ⅰ)求线段P1P2的中点M1的轨迹方程;
(Ⅱ)求△FM1M2面积的最小值;
(Ⅲ)过M1、M2的直线l是否过定点?若是,求出定点坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题P:已知函数f(x)=(2-a)x为R上的减函数,命题q:函数y=lg(ax2-ax+1)的定义域为R,如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合$A=\left\{{x\left|{-\frac{π}{4}+2kπ<x<\frac{π}{3}+2kπ,k∈Z}\right.}\right\},B=\left\{{x\left|{{2^{{x^2}-x}}}\right.<4}\right\}$,则A∩B=(  )
A.$({-\frac{π}{4},\frac{π}{3}})$B.$({-\frac{π}{4},2})$C.$({-1,\frac{π}{3}})$D.(-1,2)

查看答案和解析>>

同步练习册答案