精英家教网 > 高中数学 > 题目详情
14.如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q为PD的中点.
(Ⅰ)证明:CQ∥平面PAB;
(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.

分析 (I)取PA的中点N,连接QN,BN,则可证四边形BCQN为平行四边形,得出CQ∥BN,于是CQ∥平面PAB;
(II)取AD的中点M,连接BM;取BM的中点O,连接BO、PO,则可证OB⊥AD,PO⊥平面ABCD,以O为原点建立坐标系,求出 $\overrightarrow{PD}$和平面ACQ的法向量的坐标,即可求出直线PD与平面AQC所成角的正弦值.

解答 (Ⅰ)证明:取PA的中点N,连接QN,BN.
∵Q,N是PD,PA的中点,
∴QN∥AD,且QN=$\frac{1}{2}$AD.
∵PA=2,PD=2$\sqrt{3}$,PA⊥PD,
∴AD=4,
∴BC=$\frac{1}{2}$AD.又BC∥AD,
∴QN∥BC,且QN=BC,
∴四边形BCQN为平行四边形,
∴BN∥CQ.又BN?平面PAB,且CQ?平面PAB,
∴CQ∥平面PAB.
(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.
由(Ⅰ)知PA=AM=PM=2,
∴△APM为等边三角形,
∴PO⊥AM.同理:BO⊥AM.
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,
∴PO⊥平面ABCD.
以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,
则D(0,3,0),A(0,-1,0),P(0,0,$\sqrt{3}$),C($\sqrt{3}$,2,0),Q(0,$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).
∴$\overrightarrow{AC}$=($\sqrt{3}$,3,0),$\overrightarrow{PD}$=(0,3,-$\sqrt{3}$),$\overrightarrow{AQ}$=(0,$\frac{5}{2}$,$\frac{\sqrt{3}}{2}$).
设平面AQC的法向量为$\overrightarrow{n}$=(x,y,z),
∴$\left\{\begin{array}{l}{\sqrt{3}x+3y=0}\\{\frac{5}{2}y+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,令y=-$\sqrt{3}$得$\overrightarrow{n}$=(3,-$\sqrt{3}$,5).
∴cos<$\overrightarrow{PD}$,$\overrightarrow{n}$>=$\frac{-8\sqrt{3}}{2\sqrt{3}•\sqrt{37}}$=-$\frac{4\sqrt{37}}{37}$.
∴直线PD与平面AQC所成角正弦值为 $\frac{4\sqrt{37}}{37}$.

点评 本题考查了线面平行的判定,空间向量的应用与线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知复数z=$\frac{{i+{i^2}+{i^3}+…+{i^{2014}}}}{1+i}$,则复数z的模为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.非空集合A、B满足A?B,U为全集,则下列集合中表示空集的(  )
A.A∩BB.UA∩BC.UA∩∁UBD.A∩∁UB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知平面向量$\overrightarrow{a}$=(1,-$\sqrt{3}$),$\overrightarrow{b}$=(3,$\sqrt{3}$),则向量$\overrightarrow{a}$与向量$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.长为4、宽为3的矩形ABCD的外接圆为圆O,在圆O内任意取点M,则点M在矩形ABCD内的概率为$\frac{48}{25π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知两点F1(-$\sqrt{3}$,0)和F2($\sqrt{3}$,0),动点P满足|$\overrightarrow{O{F_1}}$+$\overrightarrow{OP}$|+|$\overrightarrow{O{F_2}}$+$\overrightarrow{OP}$|=4.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)设曲线C上的两点M,N在x轴上方,且F1M∥F2N,若以MN为直径的圆恒过点(0,2),求F1M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若对任意的x1∈[e-1,e],总存在唯一的x2∈[-1,1],使得lnx1-x1+1+a=x22ex2成立,则实数a的取值范围是(  )
A.[$\frac{2}{e}$,e+1]B.(e+$\frac{1}{e}$-2,e]C.[e-2,$\frac{2}{e}$)D.($\frac{2}{e}$,2e-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(sinα,cosα)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanα=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义f″(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.可以证明,任意三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题:
①存在有两个及两个以上对称中心的三次函数;
②函数f(x)=x3-3x2-3x+5的对称中心也是函数$y=tan\frac{π}{2}x$的一个对称中心;
③存在三次函数h(x),方程h′(x)=0有实数解x0,且点(x0,h(x0))为函数y=h(x)的对称中心;
④若函数$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-\frac{5}{12}$,则$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=-1007.5.
其中正确命题的序号为②③④(把所有正确命题的序号都填上).

查看答案和解析>>

同步练习册答案