精英家教网 > 高中数学 > 题目详情
20.如图,已知三棱锥P-ABC中,PA⊥AC,PC⊥BC,E为PB中点,D为AB的中点,且△ABE为正三角形.
(1)求证:BC⊥平面PAC;
(2)请作出点B在平面DEC上的射影H,并说明理由.若$BC=3,BH=\frac{12}{5}$,求三棱锥P-ABC的体积.

分析 (1)推导出DE⊥AB,PA⊥AB,从而PA⊥平面ABC,进而BC⊥PA,再由PC⊥BC,能证明BC⊥平面PAC.
(2)过点B作BH⊥CD于H,推导出H为点B在平面DEC上的射影,求出AB=5,PB=10,PA=5$\sqrt{3}$,由此能求出三棱锥P-ABC的体积.

解答 证明:(1)如图,∵△ABE是正三角形,且D为AB的中点,
∴DE⊥AB,
∵E为PB的中点,∴PA∥DE,∴PA⊥AB,
∵PA⊥AC,AB∩AC=A,
∴PA⊥平面ABC,∴BC⊥PA,
又∵PC⊥BC,PA∩PC=P,
∴BC⊥平面PAC.
解:(2)如图,过点B作BH⊥CD于H,
由(1)知DE⊥平面ABC,∴BH⊥DE,
又∵BH⊥CD,DE∩CD=D,∴BH⊥平面DEC,
∴H为点B在平面DEC上的射影,
在Rt△ABC中,设AC=x,则AB=$\sqrt{{x}^{2}+9}$,CD=$\frac{1}{2}AB=\frac{1}{2}\sqrt{{x}^{2}+9}$,
S△BCD=$\frac{1}{2}{S}_{△ABC}$=$\frac{1}{2}×\frac{1}{2}×3×x$=$\frac{3x}{4}$,
由${S}_{△BCD}=\frac{1}{2}{×CD×BH}_{\;}=\frac{3}{5}\sqrt{{x}^{2}+9}$,得$\frac{3x}{4}=\frac{3}{5}\sqrt{{x}^{2}+9}$,
解得x=4,
∴AB=5,PB=10,PA=5$\sqrt{3}$,
∴三棱锥P-ABC的体积V=$\frac{1}{3}{S}_{△ABC}•PA=\frac{1}{3}×\frac{1}{2}×4×3×5\sqrt{3}$=10$\sqrt{3}$.

点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,考查推理论证能力、运算求解能力、空间思维能力,考查函数与方程思想、化归转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.有一段“三段论”推理:对于可导函数f(x),如果x=x0是函数f(x)的极值点,那么f′(x0)=0,因为x=0是函数f(x)=x3+x的极值点,所以函数f(x)=x3+x在x=0处的导数值f′(0)=0.以上推理中(  )
A.大前提错误B.小前提错误C.推理形式错误D.结论正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={x|-$\frac{1}{2}$<x<$\frac{1}{2}$},N={x|x(x-1)≤0},则M∪N等于(  )
A.[0,$\frac{1}{2}$)B.(-$\frac{1}{2}$,1]C.[-1,$\frac{1}{2}$)D.(-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知P,Q是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上关于原点O对称的任意两点,且点P,Q都不在x轴上.
(Ⅰ)若D(a,0),求证:直线PD和QD的斜率之积为定值;
(Ⅱ)若椭圆长轴长为4,点A(0,1)在椭圆E上,设M,N是椭圆上异于点A的任意两点,且AM⊥AN,问直线MN是否过一个定点?若过定点,求出该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P(x0,y0)是抛物线y2=4x上的一个动点,Q是圆C:(x+2)2+(y-4)2=1上的一个动点,则x0+|PQ|的最小值为(  )
A.$2\sqrt{5}-1$B.$2\sqrt{5}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.动直线y=kx+4-3k与函数$f(x)=\frac{4x-11}{x-3}$的图象交于A、B两点,点P(x,y)是平面上的动点,满足$|{\overrightarrow{PA}+\overrightarrow{PB}}|=2$,则x2+y2的取值范围为[16,36].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,多面体EF-ABCD中,四边形ABCD是菱形,AB=4,∠BAD=60°,AC,BD相交于O,EF∥AC,点E在平面ABCD上的射影恰好是线段AO的中点.
(Ⅰ)求证:BD⊥平面ACF;
(Ⅱ)若直线AE与平面ABCD所成的角为45°,求平面DEF与平面ABCD所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}为等差数列,且满足$\overrightarrow{BA}$=a3$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{AC}$(λ∈R),点O为直线BC外一点,则a1+a2017=(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线mx2-y2=1的渐近线方程为y=±3x,则m=(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.3D.9

查看答案和解析>>

同步练习册答案