精英家教网 > 高中数学 > 题目详情
9.已知数列{an}为等差数列,且满足$\overrightarrow{BA}$=a3$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{AC}$(λ∈R),点O为直线BC外一点,则a1+a2017=(  )
A.0B.1C.2D.4

分析 推导出$\overrightarrow{OA}$=(a3+1)$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,从而由题设条件得到a3+1+a2015=1,由此能求出a1+a2017的值.

解答 解:∵数列{an}为等差数列,且满足$\overrightarrow{BA}$=a3$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,
∴$\overrightarrow{OA}$-$\overrightarrow{OB}$=${a}_{3}\overrightarrow{OB}+{a}_{2015}\overrightarrow{OC}$,
即$\overrightarrow{OA}$=(a3+1)$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,
又∵$\overrightarrow{AB}$=λ$\overrightarrow{AC}$,λ∈R,
∴a3+1+a2015=1,
∴a1+a2017=a3+a2015=0.
故选:A.

点评 本题考查等差数列的两项和的求法,考查向量知识,考查推理论证能力、运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ex-e-x,g(x)=lg(mx2-x+$\frac{1}{4}$),若对任意x1∈(-∞,0],都存在x2∈R,使得f(x1)=g(x2),则实数m的最小值为(  )
A.-$\frac{1}{3}$B.-1C.-$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知三棱锥P-ABC中,PA⊥AC,PC⊥BC,E为PB中点,D为AB的中点,且△ABE为正三角形.
(1)求证:BC⊥平面PAC;
(2)请作出点B在平面DEC上的射影H,并说明理由.若$BC=3,BH=\frac{12}{5}$,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,PA=AD=4,AB=2,以AC中点O为球心,AC为直径的球面交线段PD(不含端点)于M.
(1)求证:面ABM⊥面PCD;
(2)求三棱锥P-AMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图:在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是正方形,PA=AD=2.
(1)求异面直线PC与AB所成角的大小(结果用反三角函数值表示);
(2)求点E、F分别是棱AD和PC的中点,求证:EF⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=3+cosθ}\\{y=4+sinθ}\end{array}\right.$(θ为参数).以原点为极点、x轴正半轴为极轴建立极坐标系,已知曲线C2:ρ(sinθ-kcosθ)=3,k为实数.
(1)求曲线C1的普通方程及曲线C2的直角坐标方程;
(2)若点P在曲线C2上,从点P向C1作切线,切线长的最小值为2$\sqrt{2}$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在实数集R上的偶函数f(x),当x≥0时,f(x)=ex,若存在t∈R,对任意x∈[1,m](m>1,m∈N),都有f(x+t)≤ex,则m的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t为参数).以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=2acosθ(a>0),且曲线C与直线l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)设A、B为曲线C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R内的函数f(x)满足f(x+4)=f(x),当x∈[-1,3]时,$f(x)=\left\{\begin{array}{l}t({1-|x|}),x∈[{-1,1}]\\ \sqrt{1-{{({x-2})}^3}},x∈({1,3}]\end{array}\right.$,则当$t∈[{\frac{9}{5},2}]$时,方程5f(x)-x=0的不等实数根的个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案