精英家教网 > 高中数学 > 题目详情
4.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增的.当f(a-1)<f(a)时.则实数a的取值范围是$\frac{1}{2}<a≤3$.

分析 由偶函数性质可得f(|a-1|)<f(|a|),再由函数的单调性可去掉不等式中的符号“f”,从而转化为具体不等式,解出绝对值不等式即可.

解答 解:因为f(x)为偶函数,f(a-1)<f(a),
所以f(|a-1|)<f(|a|)
又定义在[-3,3]上的f(x)在区间[0,3]上单调递增,
所以0≤|a-1|<|a|≤3,解得$\frac{1}{2}<a≤3$,
故实数a的取值范围为:$\frac{1}{2}<a≤3$.
故答案为:$\frac{1}{2}<a≤3$.

点评 本题考查函数的奇偶性、单调性的综合应用,解决本题的关键是灵活利用函数性质去掉不等式中的符号“f”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某市三家旅游公司在国庆期间推出了“市区一日游”的豪华大巴游活动,由于私家车辆的增多,堵车已经成为旅途中最常见的问题.据统计:甲公司选择的旅游路线堵车的概率为$\frac{1}{4}$.乙、丙两公司选择的旅游路线堵车的概率为p(0<p<$\frac{2}{5}$),并且三家公司选择的旅游路线是否堵车相互之间没有影响,且三条路线只有一条路线堵车的概率为$\frac{4}{9}$.
(1)求p的值;
(2)求甲、乙、丙三家公司选择的路线中堵车路线数目ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数y=f(x)=4x-3×2x+4.
(1)设t=2x,x∈[-2,2],求t的最大值与最小值;
(2)若x∈[-2,2]时,f(x)<m(m-2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某厂一种产品的年销售量是a,由于其他新产品的出现,估计该产品的市场需求量每年下降15%.
(1)写出x年后年销售量y与x之间的函数关系式
(2)如果年销售量降为现在的一半,该产品将不得不停产,问:这种产品还可以生产几年?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=4x2-4ax+a2-2a+2.其中x∈[0,2]
(1)当a=1时.求函数f(x)在给定区间上的最值;
(2)若f(x)在给定区间上的最小值3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对定义域分别是Df,Dg的函数y=f(x),y=g(x),规定:函数h(x)=$\left\{\begin{array}{l}{f(x)•g(x)}&{当x∈{D}_{f}且x∈{D}_{g}}\\{f(x)}&{当x∈{D}_{f}且x∉{D}_{g}}\\{g(x)}&{当x∉{D}_{f}且x∈{D}_{g}}\end{array}\right.$.
(1)若函数f(x)=-2x+3,x≥1,g(x)=x-2,x∈R,写出函数h(x)的解析式;
(2)求问题(1)中函数h(x)的最大值;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos2x,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的各项为正数,其前n项和Sn=2(an-1),设bn=2-$\frac{n}{5×{2}^{n-1}}$an(n∈N).
(1)求数列{an}的通项公式.
(2)设数列{bn}的前n项和为Tn,求T的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)当x>0时,研究函数f(x)=1n(1+$\frac{1}{x}$)-$\frac{2}{x+1}$的单调性,极值和零点的个数;
(2)从点(1,1)引曲线y=x1n(1+$\frac{1}{x}$)(x>0)的切线.能引出几条?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)在区间[0,1]上有定义,f(0)=f(1),如果对于任意不同的x1,x2属于区间[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求证:|f(x1)-f(x2)|<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案