精英家教网 > 高中数学 > 题目详情
4.抛物线的焦点在x轴上,抛物线上的点P(-3,m)到焦点的距离为5,则抛物线的标准方程为y2=-8x.

分析 由题意可设抛物线的方程为y2=-2px(p>0),其准线方程为x=$\frac{p}{2}$,由抛物线的定义可得,$\frac{p}{2}$-(-3)=5,解得p,进而得到抛物线方程.

解答 解:由题意可设抛物线的方程为y2=-2px(p>0),
其准线方程为x=$\frac{p}{2}$,
由抛物线的定义可得,
抛物线上的点P(-3,m)到焦点的距离为5,
即为P到准线的距离为5,
即有$\frac{p}{2}$-(-3)=5,
解得p=4,
即有抛物线方程为y2=-8x.
故答案为:y2=-8x.

点评 本题考查抛物线的定义、方程和性质,主要考查抛物线的准线方程的运用,注意定义法解题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知二次函数f(x)=ax2+bx,则“f(2)≥0”是“函数f(x)在(1,+∞)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,且a+c=$\sqrt{2}b$.
(Ⅰ)若a=c,求角B;
(Ⅱ)若accosB=2,b=2$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线y=-$\frac{1}{8}$x2的准线方程是y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线x2=$\frac{1}{2}$y的准线方程是(  )
A.x=-$\frac{1}{8}$B.x=$\frac{1}{8}$C.y=-$\frac{1}{8}$D.y=$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线x2=2py(p>0)的焦点F与椭圆$\frac{y^2}{4}$+$\frac{x^2}{3}$=1的一个焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)直线y=kx+1交抛物线于A,B两点,过A,B分别作抛物线的切线交于点P.
(ⅰ)探究$\overrightarrow{PF}•\overrightarrow{AB}$是否为定值,若是,求出定值;若不是,请说明理由;
(ⅱ)若直线PF与抛物线交于C,D,求证:|PC|•|FD|=|PD|•|FC|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过抛物线y2=8x焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=5,则|AB|=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角α的终边经过点A(-$\sqrt{3}$,a),若点A在抛物线y=-$\frac{1}{4}$x2的准线上,则sinα=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,其离心率e=$\frac{1}{2}$,且a+c=3.
(1)求椭圆的标准方程;
(2)设A,B分别为椭圆的上、下顶点,过F2作直线l与椭圆交于C、D两点,并与y轴交于点P(异于A,B,O点),直线AC与直线BD交于点Q,则$\overrightarrow{OP}$•$\overrightarrow{OQ}$是否为定值,若是,请证明你的结论;若不是,请说明理由.

查看答案和解析>>

同步练习册答案