分析 (Ⅰ)由条件利用正弦定理求得cosA=$\frac{\sqrt{2}}{2}$,可得A=$\frac{π}{4}$,进而求得sinB=$\sqrt{2}$sinA 的值,可得B的值.
(Ⅱ)由条件利用余弦定理求得ac和B的值,可得△ABC的面积为$\frac{1}{2}$ac•sinB 的值.
解答 解:(Ⅰ)在△ABC中,由a+c=$\sqrt{2}b$,a=c,可得 2sinA=$\sqrt{2}$sinB,即sinB=$\sqrt{2}$sinA,
即sin(π-2A)=$\sqrt{2}$sinA,即2sinAcosA=$\sqrt{2}$sinA,求得cosA=$\frac{\sqrt{2}}{2}$,可得A=$\frac{π}{4}$,∴sinB=$\sqrt{2}$sinA=1,
∴B=$\frac{π}{2}$.
(Ⅱ)若accosB=2,b=2$\sqrt{3}$,则由余弦定理可得b2=12=a2+c2-2ac•cosB=(a+c)2-2ac-4=2b2-2ac-4=24-2ac-4,
求得ac=4,代入accosB=2,求得cosB=$\frac{1}{2}$,∴B=$\frac{π}{3}$,
∴△ABC的面积为$\frac{1}{2}$ac•sinB=2•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
点评 本题主要考查正弦定理和余弦定理的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -2i | D. | 2i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=3x | B. | y2=9x | C. | y2=$\frac{3}{2}$x | D. | y2=$\frac{9}{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com