精英家教网 > 高中数学 > 题目详情
16.过抛物线y2=8x焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=5,则|AB|=(  )
A.6B.7C.8D.9

分析 根据抛物线的方程求出准线方程是x=-2,结合抛物线的定义可得|AF|=x1+2且|BF|=x2+2,两式相加并结合x1+x2=5,即可得到|AB|的值为9.

解答 解:∵抛物线方程为y2=8x,
∴p=4,可得抛物线的准线方程是x=-2,
∵过抛物线 y2=8x的焦点F作直线交抛物线于A(x1,y1)B(x2,y2),
∴根据抛物线的定义,可得|AF|=x1+$\frac{p}{2}$=x1+2,|BF|=x2+$\frac{p}{2}$=x2+2,
因此,线段AB的长|AB|=|AF|+|BF|=x1+x2+4,
又∵x1+x2=5,∴|AB|=x1+x2+4=9.
故选D.

点评 本题给出抛物线焦点弦AB端点A、B的横坐标的关系式,求AB的长度,着重考查了抛物线的定义、标准方程和简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.i是虚数单位,$\overrightarrow{z}$表示复数z的共轭复数,若$\overrightarrow{z}=1+i$,则$\frac{\overrightarrow{z}}{i}+i•z$=(  )
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,过抛物线y2=2px(p>0)焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为(  )
A.y2=3xB.y2=9xC.y2=$\frac{3}{2}$xD.y2=$\frac{9}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线的焦点在x轴上,抛物线上的点P(-3,m)到焦点的距离为5,则抛物线的标准方程为y2=-8x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线x2=6y的准线方程为(  )
A.x=-$\frac{3}{2}$B.x=-3C.y=-$\frac{3}{2}$D.y=-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过A的直线l交C于另一点B,交x轴的正半轴于点D,有|FA|=|FD|,又直线l1∥l,且l1与C有唯一公共点E.
(1)证明:直线AE过x轴上一定点,并求出定点的坐标;
(2)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C:y2=2px(p>0)过定点(1,1),点P是曲线C上的动点,过点P的圆M:(x-t)2+y2=1(t>1)的切线l1,l2分别交曲线C于另外两点A,B.
(Ⅰ)求曲线C的方程;
(Ⅱ)若t=$\sqrt{2}$,点P为原点,判断直线AB与圆的位置关系;
(Ⅲ)对任意的动点P,是否存在实数t,使得直线AB与圆相切?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线l:y=2x+4与抛物线C:y=ax2(a>0)交于M,N两点,直线l与x轴交于A点,若$\overrightarrow{AN}$=4$\overrightarrow{AM}$,则抛物线C的方程为y=2x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等差数列{an}的前n项和为Sn,若a1=-11,a4+a6=-6.
(1)求数列{an}的通项公式;
(2)求当Sn取最小值时,序号n的值,并求出Sn的最小值;
(3)求数列{|an|}的前n项和Tn

查看答案和解析>>

同步练习册答案