精英家教网 > 高中数学 > 题目详情
14.已知数列{an}的前n项和为Sn,且满足an+Sn=2.
(1)求数列{an}的通项公式;
(2)令bn=n•an,求数列{bn}的前n项和Tn

分析 (1)运用当n=1时,a1+S1,当n≥2时,an=Sn-Sn-1,结合等比数列的通项公式即可得到;
(2)求得${b_n}=\frac{n}{{{2^{n-1}}}}$,由数列的求和方法:错位相减法,结合等比数列的求和公式,即可得到所求和.

解答 解:(1)当n=1时,a1+S1=2a1=2,∴a1=1.
当n≥2时,由an+Sn=2及an-1+Sn-1=2,得an-an-1+Sn-Sn-1=0,
即2an=an-1,$\frac{a_n}{{{a_{n-1}}}}=\frac{1}{2}$.
∴数列{an}为首项为1,公比为$\frac{1}{2}$的等比数列.
∴${a_n}=1×{({\frac{1}{2}})^{n-1}}=\frac{1}{{{2^{n-1}}}}$.
(2)由(1)得${b_n}=\frac{n}{{{2^{n-1}}}}$,
${T_n}=\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+…+\frac{n}{{{2^{n-1}}}}$.
$\frac{1}{2}{T_n}=\frac{1}{2^1}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$,
两式相减得$\frac{1}{2}{T_n}=1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}=\frac{{1-\frac{1}{2^n}}}{{1-\frac{1}{2}}}-\frac{n}{2^n}=2-\frac{n+2}{2^n}$.
∴${T_n}=4-\frac{n+2}{{{2^{n-1}}}}$.

点评 本题考查数列的通项公式的求法,注意运用当n=1时,a1+S1,当n≥2时,an=Sn-Sn-1,考查等比数列的通项公式和求和公式,以及数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A=$\left\{{\left.x\right|{{({\frac{1}{2}})}^{{x^2}-5x+6}}≥\frac{1}{4}}\right\},B=\left\{{\left.x\right|{{log}_2}\frac{x-3}{x-1}<1}\right\},C=\left\{{\left.x\right|a-1<x<a}\right\}$.
(Ⅰ)求A∩B,(∁RB)∪A;
(Ⅱ)若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a,\overrightarrow b$满足,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$且$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,则$\overrightarrow a•\overrightarrow b$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,已知a2=-8,公差d=2,则a12=(  )
A.10B.12C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,以C的右焦点F为圆心,以a为半径的圆与C的一条渐近线交于A,B两点,若△ABF为等边三角形,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)的导函数f'(x)的图象如图所示,则(  )
A.x=-3为f(x)的极大值点B.x=1为f(x)的极大值点
C.x=-1.5为f(x)的极大值点D.x=2.5为f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.命题“$?x>0,x+\frac{1}{x}≥2$”的否定是$?x>0,x+\frac{1}{x}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线y2=ax(a>0)与直线x=1围成的封闭图形的面积为$\frac{4}{3}$,则二项式(x+$\frac{a}{x}$)20展开式中含x-16项的系数是190.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)若该市有110万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由;
(Ⅲ)若该市政府希望使80%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.

查看答案和解析>>

同步练习册答案