精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)的导函数f'(x)的图象如图所示,则(  )
A.x=-3为f(x)的极大值点B.x=1为f(x)的极大值点
C.x=-1.5为f(x)的极大值点D.x=2.5为f(x)的极小值点

分析 利用导函数的图象,判断极值点,推出结果即可.

解答 解:由导函数的图象,可知,f′(1)=0,x∈(-3,1),f′(x)>0,函数是增函数,
x∈(1,2.5),f′(x)<0,函数是减函数,所以x=1为f(x)的极大值点.
故选:B.

点评 本题考查导函数的图象的应用,函数的极值点的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.图1是甲流水线样本的频率分布直方图,表1是乙流水线样本频数分布表.
表1:(乙流水线样本频数分布表) 
产品重量(克)频数
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
(Ⅰ)若以频率作为概率,试估计从甲流水线上任取5件产品,求其中合格品的件数X的数学期望; (Ⅱ)从乙流水线样本的不合格品中任意取x2+y2=2件,求其中超过合格品重量的件数l:y=kx-2的分布列;(Ⅲ)由以上统计数据完成下面$\frac{π}{2}$列联表,并回答有多大的把握认为“产品的包装质量与两条资动包装流水线的选择有关”.
甲流水线乙流水线合计
合格品a=b=
不合格品c=d=
合 计n=
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的临界值表供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数$f(x)=lnx-ax-\frac{1}{x}-1$.
(1)当a=1时,求曲线f(x)在x=1处的切线方程;
(2)当$a=\frac{3}{4}$时,求函数f(x)的单调区间;
(3)在(2)的条件下,设函数$g(x)={x^2}-2bx-\frac{5}{12}$,若对于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正四棱锥P-ABCD中,AB=6,二面角P-BC-A的大小为$\frac{π}{3}$,则异面直线PB与AD所成角的正弦值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且满足an+Sn=2.
(1)求数列{an}的通项公式;
(2)令bn=n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.记区间(x1,x2)的长度为L=x2-x1,已知函数$f(x)=\frac{1}{3}a{x^2}+\frac{1}{2}b{x^2}+cx+d$(a>b>c),其图象在点(1,f(1))处的切线斜率为0,则函数f(x)单调递减区间的长度L的取值范围为(  )
A.$({1,\frac{3}{2}})$B.$({\frac{3}{2},3})$C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+5,则f(3)+f'(3)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x>0,x2+x>0”的否定是(  )
A.?x>0,x2+x≤0B.?x≤0,x2+x>0C.?x0>0,x02+x0≤0D.?x0≤0,x02+x0>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.命题“存在x∈R,使得x2-x+2<0”的否定是任意x∈R,都有x2-x+2≥0.

查看答案和解析>>

同步练习册答案