精英家教网 > 高中数学 > 题目详情
4.记区间(x1,x2)的长度为L=x2-x1,已知函数$f(x)=\frac{1}{3}a{x^2}+\frac{1}{2}b{x^2}+cx+d$(a>b>c),其图象在点(1,f(1))处的切线斜率为0,则函数f(x)单调递减区间的长度L的取值范围为(  )
A.$({1,\frac{3}{2}})$B.$({\frac{3}{2},3})$C.(1,3)D.(2,3)

分析 求出函数的导数,求得切线的斜率可得a+b+c=0,由a>b>c,可得a>0,c<0,求出-$\frac{1}{2}$>$\frac{c}{a}$>-2,由f′(1)=0得到方程有一根为1,设出另一根,根据韦达定理可表示出另一根,根据求出的范围求出另一根的范围,令导函数大于0的不等式的解集应该为x大于另一根小于1,所以L就等于1减另一根,求出1减另一根的范围即可.

解答 解:f'(x)=ax2+bx+c,
由图象在点(1,f(1))处的切线斜率为0,
得f'(1)=0,即a+b+c=0,
由a>b>c知:a>0,c<0.
由a>b=-a-c>c,得-$\frac{1}{2}$>$\frac{c}{a}$>-2,
由f'(1)=0知:方程f'(x)=0即ax2+bx+c=0的一根为1,
设另一根为x0,则由韦达定理,得x0=$\frac{c}{a}$.
由a>0,令f'(x)=ax2+bx+c<0,得x0<x<1,
设函数f(x)单调递减区间为[m,n],
则[m,n]=[x0,1],从而L=n-m=1-x0∈($\frac{3}{2}$,3),
故选B.

点评 本题考查导数的运用:求切线的斜率和单调区间,考查不等式的性质的运用,以及二次方程的韦达定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知点M(5,-6)和向量$\overrightarrow{a}$=(1,-2),若$\overrightarrow{NM}$=3$\overrightarrow{a}$,则点N的坐标为(  )
A.(2,0)B.(-3,6)C.(6,2)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=ax+bx+cx,其中c>a>0,c>b>0,若a,b,c是△ABC的三条边长,则下列结论正确的是(  )
①对任意x∈(-∞,1),都有f(x)<0;
②存在x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,存在x∈(1,2),使f(x)=0.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,已知三边的长分别是sinα,sinβ,sin(α+β)($α,β∈({0,\frac{π}{2}})$),则△ABC外接圆的面积为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)的导函数f'(x)的图象如图所示,则(  )
A.x=-3为f(x)的极大值点B.x=1为f(x)的极大值点
C.x=-1.5为f(x)的极大值点D.x=2.5为f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若x,y满足约束条件$\left\{\begin{array}{l}x+y-1≥0\\ y≥2x-2\\ y≤2\end{array}\right.$,且z=kx+y取最小值时的最优解有无数个,则k=-2或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知下表所示数据的回归直线方程为$\widehaty=4x-4$,则实数a的值为(  )
x23456
y3711a21
A.16B.18C.20D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设Sn是等差数列{an}的前项和,若S4≠0,且S8=3S4,设S12=λS8,则λ=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知扇形的半径为3,圆心角为$\frac{2π}{3}$,则扇形的弧长为(  )
A.B.C.360D.540

查看答案和解析>>

同步练习册答案