精英家教网 > 高中数学 > 题目详情
9.若x,y满足约束条件$\left\{\begin{array}{l}x+y-1≥0\\ y≥2x-2\\ y≤2\end{array}\right.$,且z=kx+y取最小值时的最优解有无数个,则k=-2或1.

分析 先根据约束条件画出可行域,由z=kx+y,利用z的几何意义求最值,要使得取得最小值的最优解有无数个,只需直线z=kx+y与可行域的边界AC,BC平行时,从而得到k值即可.

解答 解:∵z=kx+y则y=-kx+z,z为直线y=-x+在y轴上的截距,
要使目标函数取得最小值的最优解有无穷多个,
则截距最小时的最优解有无数个.
把z=kx+y平移,使之与可行域中的边界AC,或BC重合即可,
∵A(2,2),B(-1,2),C(1,0),
∴-k=$\frac{2-0}{2-1}$=2或-k=$\frac{2-0}{-1-1}$
解得k=2或k=-1,
故答案为:2或-1.

点评 本题主要考查了简单线性规划的应用、二元一次不等式(组)与平面区域等知识,解题的关键是明确z的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.B是单位圆O上的点,点A(1,0),点B在第二象限.记∠AOB=θ且sinθ=$\frac{4}{5}$.
(1)求B点坐标;
(2)求$\frac{sin(π+θ)+2sin(\frac{π}{2}-θ)}{2cos(π-θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(-1,2)$,$\overrightarrow c=(4,1)$.
(1)求满足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的实数m,n;
(2)若$({\overrightarrow a+k\overrightarrow c})⊥({2\overrightarrow b-\overrightarrow a})$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,若$sinC=\frac{2}{3},a=3,c=4$,则角A等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.记区间(x1,x2)的长度为L=x2-x1,已知函数$f(x)=\frac{1}{3}a{x^2}+\frac{1}{2}b{x^2}+cx+d$(a>b>c),其图象在点(1,f(1))处的切线斜率为0,则函数f(x)单调递减区间的长度L的取值范围为(  )
A.$({1,\frac{3}{2}})$B.$({\frac{3}{2},3})$C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-2x,g(x)=ax-1,若?x1∈[-1,2],?x2∈[-1,2],使得f(x1)=g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若关于x的方程|x3-ax2|=x有不同的四解,则a的取值范围为(  )
A.a>1B.a<1C.a>2D.a<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)的焦点坐标为F($\frac{1}{2}$,0).
(Ⅰ)求p的值;
(Ⅱ)已知斜率为2的直线l与抛物线C相交于与原点不重合的两点A,B,且OA⊥OB,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)计算:cos(-$\frac{19π}{6}$);
(Ⅱ)已知x∈[$\frac{π}{2}$,$\frac{3π}{2}$],且sinx=-$\frac{3}{5}$,求tanx的值.

查看答案和解析>>

同步练习册答案