精英家教网 > 高中数学 > 题目详情
14.已知扇形的半径为3,圆心角为$\frac{2π}{3}$,则扇形的弧长为(  )
A.B.C.360D.540

分析 利用弧长公式计算即可得答案.

解答 解:l=αr=$\frac{2π}{3}$×3=2π.
故选:B.

点评 本题考查了弧长公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.记区间(x1,x2)的长度为L=x2-x1,已知函数$f(x)=\frac{1}{3}a{x^2}+\frac{1}{2}b{x^2}+cx+d$(a>b>c),其图象在点(1,f(1))处的切线斜率为0,则函数f(x)单调递减区间的长度L的取值范围为(  )
A.$({1,\frac{3}{2}})$B.$({\frac{3}{2},3})$C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中,正方形的中心坐标为(1,0),其一边AB所在直线的方程为x-y+1=0,则边CD所在直线的方程为x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若命题“?x0∈R,使得x02+(a-1)x0+1≤0”为真命题,则实数a的范围为a≤-1或a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.命题“存在x∈R,使得x2-x+2<0”的否定是任意x∈R,都有x2-x+2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)计算:cos(-$\frac{19π}{6}$);
(Ⅱ)已知x∈[$\frac{π}{2}$,$\frac{3π}{2}$],且sinx=-$\frac{3}{5}$,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设p:实数t满足t2-5at+4a2<0(其中a≠0),q:方程$\frac{{x}^{2}}{t-2}$+$\frac{{y}^{2}}{t-6}$=1表示双曲线.
(Ⅰ)若a=1,且p∧q为真命题,求实数t的取值范围;
(Ⅱ)若q是p的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.我们将一个四面体四个角中直角三角形的个数定义为此四面体的直度,在四面体ABCD中,AD⊥平面ABC,AC⊥BC,则四面体ABCD的直度为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直角坐标平面内,过点P(2,1)且与圆x2-x+y2+2y-4=0相切的直线(  )
A.有两条B.有且仅有一条C.不存在D.不能确定

查看答案和解析>>

同步练习册答案